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We develop a Hamiltonian formalism for simulating interacting chiral fermions on the lattice while
preserving unitarity and locality and without breaking the chiral symmetry. The fermion doubling problem
is circumvented by constructing a Fock space endowed with a semi-definite norm. When projecting our
theory on the the single-particle sector, we recover the framework of Stacey fermions, and we demonstrate
that the scaling limit of the free model recovers the chiral fermion field. Technically, we make use of a
matrix product operator norm to mimick the boundary of a higher dimensional topological theory. As
a proof of principle, we consider a single Weyl fermion on a periodic ring with Hubbard-type nearest-
neighbor interactions and construct a variational generalized DMRG code to demonstrate that the ground
state for large system sizes can be determined efficiently. As our tensor network approach does not exhibit
any sign problem, we can add a chemical potential and study real-time evolution.

Introduction and main results. Simulating chiral quan-
tum field theories on the lattice is a central problem in both
high energy and condensed matter physics. The Nielsen-
Ninomiya theorem [1, 2] prohibits the existence of a local
symmetry-preserving lattice model with the correct con-
tinuum limit due to unphysical low-energy modes (“dou-
blers”), which dynamically couple in the presence of in-
teractions. Any local lattice formulation, e.g., Wilson
fermions [3], Ginsparg–Wilson fermions [4] or staggered
fermions [5], either violate an internal or lattice symme-
try. The only lattice models exhibiting chiral fermions
without breaking any other symmetries are non-local the-
ories [6–8], which is unsatisfactory. The problem can be
mitigated by placing the theory on the edge of a higher-
dimensional theory [9–11], but this leads to much larger
simulation costs, and some symmetries are still broken.
In this Letter, we provide an alternative solution preserv-
ing all symmetries without requiring an increase in space-
time dimension by endowing our Hilbert space with a semi-
definite metric in the form of a matrix product operator
(MPO) [12, 13]. Intuitively, this metric mimics the role
of the higher-dimensional bulk theory, but its construction
is locality preserving. For sake’s clarity, we will limit our
discussion to the one-dimensional case, but all arguments
extend to higher dimensions.
Our work is based on the ground-breaking paper of Stacey
[14], which solved the fermion doubling problem in the
single-particle case by making use of the implicit (versus
the usual explicit) way of discretizing the differentials in
the field equations. We reinterpret this construction from a
finite-elements perspective. Following [15, 16], Stacey’s
theory amounts to working with non-orthogonal orbitals
and leads to a mapping of the stationary solutions of a
single-particle Weyl equation

i ∂
∂t
ψ(x, t) = −i ∂

∂x
ψ(x, t) (1)

to a generalized eigenvalue problem of tridiagonal matrices

(with periodic boundary conditions on L sites)

H|ϕ⟩ = λN |ϕ⟩ , (2)

Hmn=
i
2
(δm,n−1−δm,n+1) , Nmn=

1
4
(δm,n∓1+2δm,n) ,

where N encodes the overlap between the different or-
bitals. These circulant matrices are are diagonal in the
Fourier basis. The generalized eigenvalues are ratios of the
eigenvalues of N and H labeled by momenta k= 2πn

L
:

λk = 2 sin(k)

1+cos(k)
= 2 tan( 1

2
k). (3)

The essential trait of this solution is that the unwanted zero-
modes ofH at k = ±π become poles by virtue of the norm
of the associated wavefunction being singular: the metric
N has a zero mode breaking the continuity of the disper-
sion relation (lying at the origin of fermion doubling).
In this paper, we extend Stacey’s formalism to the many-
body case, i.e., we build its second-quantized version. The
Fock space is spanned by (unnormalized) vectors

|n1, n2, ..., nL⟩ = (a†1)
n1(a†2)

n2 ...(a†L)
nL |Ω⟩

with ni ∈ {0, 1}, ai|Ω⟩ = 0 and commutation relations

{ai, a†j} = Nij, {ai, aj} = {a†i , a†j} = 0 (4)

where N is the single-particle norm matrix. This choice
reproduces Stacey’s results in the single-particle sector. A
crucial feature of the usefulness of this Fock space repre-
sentation is contained in the following fact: the overlaps
between different Fock states are given by a matrix prod-
uct operator Ñ of bond dimension χ = 4. This implies that
we can easily calculate norms (and expectation values) of
matrix product state wavefunctions of the form

|ψ⟩ =
∑

n1n2···

Tr (An1
1 A

n2
2 ...A

nL

L )︸ ︷︷ ︸
|ϕ⟩

|n1, n2, ..., nL⟩ (5)

by contracting the tensor network ⟨ϕ|Ñ |ϕ⟩. The physical
meaning of the semidefinite norm becomes transparent by
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FIG. 1. The matrix product operator fixed point of a double layer
PEPS (green) induces a matrix product operator norm (white) for
matrix product states (blue) living on the virtual degrees of free-
dom of the PEPS.

imagining that the chiral theory lives on the edge of a (sym-
metry protected) topological model in 2+1 dimensions, and
more specifically of a gapped bulk theory, represented by
a projected entangled-pair state (PEPS) [13, 17]. The edge
modes can be represented by the dangling indices of the
PEPS on the border [18], and the norm of such states is de-
termined by the entanglement spectrum of the bulk theory
(see Fig. 1). In [19, 20], it was demonstrated that entan-
glement Hamiltonians of chiral PEPS exhibit zero-modes
similar to the ones represented here. Nevertheless, our sim-
ulations do not require such a higher-dimensional theory,
which differentiates our approach from the one in [10, 11].

The Hamiltonian, just as any other observable, is expressed
in terms of conjugate creation/annihilation operators bi.
We will simulate the following Hamiltonian:

Ĥ=J
∑
n

(
i b†nbn+1 + h.c.

)
+U

∑
n

b†nb
†
n+1bn+1bn, (6)

The bi also annihilate the vacuum |Ω⟩ and satisfy the
canonical (anti)commutation relations

{bi, a†j} = δij. (7)

The knowledge of this (anti)commutation rule is sufficient
to calculate expectation values of local observables effi-
ciently using tensor networks. Indeed, the Hamiltonian Ĥ
can be retracted onto |ϕ⟩, which we denote as H̃ . This
retraction preserves hermiticity such that Ñ and H̃ give
rise to a Hermitian generalized eigenvalue problem with a
real spectrum. In the single-particle sector, it reduces to
Stacey’s formulation (2). But our constructions allows to
target the interacting many-body problem, as illustrated in
Fig. 2, showing the full generalized spectrum of the above
Hamiltonian on a lattice with L = 11 sites, together with
the associated momenta. In the case of non-interacting
fermions (U = 0), the ground state is simply obtained by
filling the Fermi sea yielding a ground state energy equal to
the sum of negative single-particle generalized eigenvalues.
The dynamics of the system is governed by a generalized
Schrödinger equation

iÑ ∂
∂t
|ϕ(t)⟩ = H̃|ϕ(t)⟩ (8)

and both ⟨ϕ(t)|Ñ |ϕ(t)⟩ and ⟨ϕ(t)|H̃|ϕ(t)⟩ are constants
of motion under these dynamics. Since H̃ and Ñ are U(1)
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FIG. 2. The full generalized spectrum of a chiral fermion in the
presence of a Hubbard-type interaction (6) on 11 sites with n par-
ticles with J = U = 1. In the single-particle sector, we recover
the correct single-particle spectrum.

invariant, we can use the gauging map for quantum states
[21–23] to gauge the U(1) symmetry of this model. As
we are dealing with a single right-moving Weyl fermion
this U(1) symmetry is well known to be anomalous in the
continuum quantum field theory prohibiting its promotion
to a gauge symmetry. We expect this anomaly to manifest
itself in our lattice model, for instance through the Lieb-
Schultz-Mattis theorem [24] as a mixed anomaly between
the U(1) and translation symmetry [25].
Action principle and quantization. Recently, Stacey’s
formalism was used for discretizing both space and time in
a path integral formalism, resulting in a local Lagrangian
for a helical Luttinger liquid with Hubbard interaction,
amenable to Monte Carlo sampling at half-filling [26].
Here, instead, we keep time continuous in order to moti-
vate the second quantization and Fock space construction,
as well as the resulting generalized Schrödinger equation.
Furthermore, we reinterpret the spatial lattice as resulting
from applying a finite elements procedure using a set of
non-orthogonal basis functions to approximate the contin-
uum problem. We start from action for which the Euler-
Lagrange equation gives rise to the Weyl equation (1)

S[ψ∗, ψ]=

∫ t1

t0

dt

∫
dx

(
i
2
ψ(x, t)∗ ∂

∂t
ψ(x, t)

− i
2

(
∂
∂t
ψ∗(x, t)

)
ψ(x, t)−ψ(x, t)∗

(
−i ∂

∂x

)
ψ(x, t)

)
.

Here, the time derivative has been written in a manifestly
Hermitian form, whereas the spatial derivative is Hermitian
by virtue of the domain and spatial boundary conditions of
ψ at any instance of time. We express ψ(x, t) with respect
to a set of functions {φn(x), n ∈ Z} as

ψ(x, t) =
∑
n

bn(t)φn(x) (9)
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where the functions are not orthonormal but satisfy

⟨φm|φn⟩=Nmn , ⟨φm|(−i ∂
∂x
)|φn⟩=Hmn . (10)

An admissible set of functions that satisfy these iden-
tities in a distributional sense is given by φn(x) =
1√
2
χ(−1,+1)(2x−n), where χ(−1,+1)(x) is the indicator

function of the open interval (−1,+1). Inserting (9) into
the action gives rise to S[b∗, b]=

∫ t1
t0

dt L(b, ḃ, b∗, ḃ∗) with

L=
∑
m,n

{
i
2

[
b∗mNmnḃn−ḃ∗mNmnbn

]
−b∗mHmnbn

}
.

The canonical conjugate variables to {bn} are given by

pn =
∂L

∂ḃn
= −ib∗mNmn (11)

We quantize the theory by imposing canonical anti-
commutation relations {pm, bn} = −iδm,n thereby ob-
taining (4) and (7) by defining an = bmNmn and, thus,
a†n=b

†
mNmn

1. The second-quantized Hamiltonian is given
by

Ĥ =
∑
m,n

b†mHmnbn =
∑
m,n

a†m(N
−1HN−1)mnan (12)

to which we can add interaction terms, as in (6). The free
Heisenberg equations of motion are

ȧ†k= i[Ĥ, a
†
k]= i

∑
m

b†mHmk= i
∑
m

a†m(N
−1H)mk,

which entail local commutators with the Hamiltonian for
observables built from b†mNmn and bmNmn, e.g.,

[Ĥ, b†mNmnbkNkl] = b†mHmnbkNkl − b†mNmnbkHkl.

We expect this to be relevant to prove Lieb-Robinson-type
bounds in our model. We can now build a Fock space us-
ing the creation operators a†m acting on a vacuum |Ω⟩ with
an |Ω⟩ = 0 = bk |Ω⟩. We expand a many-body state as

|Ψ⟩ =
∑
{ni}

ϕn1n2... (a
†
1)

n1(a†2)
n2 ... |Ω⟩ (13)

Denoting ϕn⃗ =ϕn1n2... and |n⃗⟩=(a†1)
n1(a†2)

n2 ... |Ω⟩, the
time-evolution action principle S[ϕ∗, ϕ]=

∫ t1
t0
dtL(t) with

L(t) =
∑
n⃗,n⃗′

[
i
2
ϕ∗
n⃗Ñn⃗,n⃗′ϕ̇n⃗′ + h.c.

]
− ϕ∗

n⃗H̃n⃗,n⃗′ϕn⃗′

gives rise to the equation of motion

i
∑
n⃗′

Ñn⃗,n⃗′ ϕ̇n⃗′ =
∑
n⃗′

H̃n⃗,n⃗′ϕn⃗′

1 Strictly speaking, all steps only hold true in this form if N is non-
degenerate, which can be achieved by choosing appropriate boundary con-
ditions on finite lattices. This does not pose any problem for the continuum
and thermodynamic limit as long as 0 belongs to the continuous spectrum
of N . Otherwise, Dirac’s algorithm for constrained systems needs to be
applied.

with Ñn⃗,n⃗′ = ⟨n⃗|n⃗′⟩ and H̃n⃗,n⃗′ = ⟨n⃗|Ĥ|n⃗′⟩ the retrac-
tion of the identity and Hamiltonian as introduced above.
If the set of coefficients ϕ, previously referred to as |ϕ⟩,
is also constrained to a particular form such as MPS, we
can still use the same action by inserting such parameteri-
zation. This gives rise to the Dirac-Frenkel time-dependent
variational principle (TDVP), where the retraction of the
norm matrix onto the tangent space of the variational man-
ifold will appear. Importantly, we will not have to invert
the norm matrix Ñ in the full Hilbert space, but only its
restriction onto the tangent space.
Continuum limit. The continuum formulation of a (free)
chiral fermion field describing right-moving particles can
be recovered by a scaling limit procedure [27, 28]: We
start with the construction in finite volume resolved at var-
ious length scales Λε = ε{1, ..., L} ⊂ εZ (εL = const.)
as the thermodynamic limit can be achieved consecutively
[29, 30]. In (10), the model is defined at unit scale (ε =
1). It can be transferred to Λε by rescaling: φ(ε)

n (x) =
1√
ε
φn(ε

−1x). To extract the low-energy physics of the lat-
tice model, we focus on the many-body ground-state sec-
tor associated with (12) at a given scale ε, i.e., by filling
up all the negative-energy modes according to the disper-
sion relation in (3): |vacε⟩ ∝

∏
k<0 a

†
k |Ωε⟩. The scaling

limit is constructed by defining an ascending superoperator
R identifying normal-ordered Wick monomials in a, a† at
different scales (following Wilson’s triangle [27, 31]). This
allows us to obtain the convergence correlation functions
⟨vacε| a†...a... |vacε⟩ at finite scales to the vacuum correla-
tion functions ⟨vac0| c†...c... |vac0⟩ of chiral fermion field
ψ in the continuum (with annihilation/creation operators
c, c†). The convergence relies on the observation that the
metric at scale ε converges to the identity in the scaling
limit, i.e., Nε

ε→0→ 1. This entails that (4) reproduces the
canonical anticommutation relations in the scaling limit.
At the same time, the scale-dependent dispersion relation
λ
(ε)
k = 2ε−1 tan( 1

2
εk) recovers the massless, relativistic

dispersion relation λ(0)
k = k for ε → 0. We will provide

further details on the scaling limit construction elsewhere.
MPO representations. The (semi)definite norm matrix

Ñn1...nL;n′
1...n

′
L
=⟨Ω|(aL)nL ...(a1)

n1(a†1)
n′
1 ...(a†L)

n′
L |Ω⟩

has the form of a uniform matrix product operator (MPO)
with bond dimension 4 and local tensor N . To see this,
note that a particle created at the site i can be annihilated
at the same and adjacent sites. The MPO tensor N has the
following non-zero entries (where we use the convention
that the indices come in the order left, up, right, down; and
that value 2 for the up and down –i.e., physical– indices
encodes a fermion present, while 1 indicates no fermion):

N1111 = 1, N1212 = Ni,i

N1221 = N2112 = N1132 = N3211 =
√
Ni,i+1

N1242 = −N4212 = N2222 = N3232 = Ni,i+1
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The MPO has different boundary conditions for the even
and odd particle sectors. While no boundary term is needed
for the odd particle sector, the even particle sector re-
quires the introduction of a twist with a diagonal matrix
with elements Bii = 1 for i = 1, 4 and Bii = −1 for
i = 2, 3. This can be checked by mapping ai to a spin oper-
ator. These boundary conditions originate from the Jordan-
Wigner transformation of fermions, leading to the extra
negative sign in the even particle number sector [24, 32].
Alternatively, interpreting N as a fermionic tensor (using
the formalism of [33]), with odd fermion parity for value
2 of the physical (up and down) indices and for values 2
and 3 of the virtual (left and right) indices, no additional
boundary matrix is required.
The Hamiltonian can be constructed from this MPO by act-
ing on it with spin creation and/or annihilation operators
σ+ = |1⟩⟨0|, σ− = |0⟩⟨1|. For example, the kinetic term
which acts between sites k and k+1 would be represented
as iσ+

ñk,nk
Ñn1···nL

n′
1···n′

L
σ−
ñ′
k+1n

′
k+1

+ hermitian conjugate.
Interacting ground state optimization. Given the fact that
both H̃ and Ñ have the form of an MPO and that the varia-
tional principle still works for generalized eigenvalue prob-
lems whenever Ñ is positive semidefinite (as long as the
zero modes for Ñ are also zero-modes for H̃)

λmin = min
ϕ

⟨ϕ|H̃|ϕ⟩
⟨ϕ|Ñ |ϕ⟩

we can, in principle, use standard tensor network tech-
niques to optimize the MPS [34, 35], which allows to sim-
ulate interacting spin chains at a cost that only scales lin-
early in the system size as long as the ground state sat-
isfies an area law for the entanglement entropy [36, 37].
Crucially, DMRG does not exhibit any sign problem, even
away from halve-filling. For the non-interacting model,
the filled Fermi sea results in a diverging energy den-
sity E/L in the thermodynamic limit, which we expect
to persist in the interacting Hamiltonian (12). This pre-
vents a naive implementation of the infinite lattice, but
the ground state and its energy on finite periodic rings
with an odd number of sites is well defined. The filled
Fermi sea of the non-interacting Hamiltonian gives rise
to a ground state momentum that cannot equal zero or π.
Therefore, we have to use a general non-translational MPS
ansatz on a ring. Similar to the density matrix renormaliza-
tion group (DMRG) algorithm for systems with periodic
boundary conditions [38], the MPS can be optimized lo-
cally by finding the optimal tensor. More precisely, we
compute an effective Hamiltonian Heff(i) for site-i so that
⟨ψ(A)|H̃|ψ(A)⟩ = A†

iH̃eff(i)Ai. Similarly, we obtain
Ñeff(i) as ⟨ψ(A)|Ñ |ψ(A)⟩ = A†

i Ñeff(i)Ai. Then, the op-
timal tensor Ai can be found by solving

H̃eff(i)Ai = λminÑeff(i)Ai,

where λmin is the smallest (generalised) eigenvalue corre-
sponding to the ground state. It is important to project out

FIG. 3. (a) The spectrum of the reduced density matrix obtained
from exact diagonalization of the Hamiltonian (6) on 11 sites.
The reduced density matrix is obtained by tracing out the degrees
of freedom on the first five sites. (b) The entanglement entropy
of the free Hamiltonian (U = 0), obtained by dividing the lattice
by half on 5, 7, 9, 11, and 13 sites. The scaling is consistent with
the chiral central charge c = 1 of complex fermionic modes.

the null space before inverting Ñeff. After optimizing every
site in an iterative manner, we observe that the energy con-
verges quickly, as in conventional DRMG simulations. We
simulate the interacting Hamiltonian (6) with U/J = 1
and observe that the Schmidt spectrum of the half-chain
decays exponentially. This clearly suggests that DMRG
will work equally well for the generalized eigenvalue case
as for the normal case. For the case of an odd number
of particles and length L = 11; the ground state ener-
gies obtained for bond dimension χ = (4, 6, 8, 10, 12) are
respectively equal to (-9.084089, -9.086027, -9.086092, -
9.086096,-9.086097), which shows the fast convergence to
−9.086098: the value obtained from exact diagonaliza-
tion2. The success of our DMRG algorithm is corroborated
by the hierarchical entanglement structure of many-body
ground states in one dimension. In Fig. 3, we demonstrate
the spectrum of the reduced density matrix computed from
exactly diagonalizing the Hamiltonian (6) on 11 sites. As
is observed in conventional MPS simulations, the Schmidt
values decay exponentially and thereby allow for an effi-
cient simulation using MPS with finite bond dimensions.
U = 0 is the gapless regime where we observe a slower
decay rate. Still, the spectrum of U > 0 can be well ap-
proximated with a few leading values. For L = 51 and
U/J = 1, it is, of course, completely impossible to di-
agonalize the Hamiltonian with exact diagonalization. We
obtain an energy of −32.889236 with a DMRG simulation
with χ = 4. In analogy to standard MPS techniques, devel-
oping finite-size and/or entanglement scaling methods [39–
45] to extrapolate those results is significant to further im-
prove accuracy in the future.

2 We use Ni,i = 2, Ni,i+1 = 1 in the following calculations.
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Discussion and outlook. Our results indicate that we can
build lattice models of interacting chiral fermions, and effi-
ciently target their ground state using ED [46] or MPS tech-
niques. Developing finite-size and/or entanglement scal-
ing methods [39–45] to extrapolate those results is signif-
icant to further improve accuracy in the future. It is also
important that our method can be extended to the higher-
dimensional case by using Projected Entangled Pair States
(PEPS) [13, 17]; indeed, it can readily be seen that the
norm matrix in this case can efficiently be represented as
a PEPO[47]. Another question is to construct PEPS wave-
functions with the MPO Ñ as the leading eigenvector of
the transfer matrix.

We can also generalize MPS techniques to extract the inter-
acting excitation spectrum [48, 49] or to study dynamics.
For the latter, the TDVP equation [50] seems to provide
the best starting point, as the Hamiltonian H̃ acting on the
MPS includes the norm matrix and does not admit a simple
Trotter decomposition. While the effective norm matrix in
the MPS tangent space (a.k.a. the metric) can no longer be
made equal to the identity matrix using MPS gauge ma-
nipulations, the resulting equations can still be integrated
efficiently by inverting the Gram matrix using a conjugate
gradient scheme[47].

These algorithmic considerations are closely related to the
conceptual questions regarding the locality of the gener-
alized Schrödinger equation, which we will address in a
forthcoming paper. What is the correct generalization of
the Lieb-Robinson bound in this nonorthogonal quantum
world, and is satisfied by a Hamiltonian that is local in
b and b†? Can an area law for the (Renyi) entanglement
entropy in the generalized eigenvalue setting [36, 37] be
proven? It is also an interesting question to compare our
Hamiltonian approach to the path integral approach of [26],
where both time and space were discretized with Stacey’s
method. Another outstanding question is how to simulate
our generalized Hamiltonian system on a quantum simu-
lator or quantum computer. It is not evident to do this
without coupling the system of interest to a bulk theory
or by introducing long-range interactions in the form of
Ñ−1/2H̃Ñ−1/2.
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