Fixed-point tensor is a four-point function
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Through coarse-graining, tensor network representations of a two-dimensional critical lattice
model flow to a universal four-leg tensor, corresponding to a conformal field theory (CFT) fixed-
point. We computed explicit elements of the critical fixed-point tensor, which we identify as the
CFT four-point function. This allows us to directly extract the operator product expansion coeffi-
cients of the CFT from these tensor elements. Combined with the scaling dimensions obtained from
the transfer matrix, we determine the complete set of the CFT data from the fixed-point tensor for

any critical unitary lattice model.

Introduction.— Renormalization group (RG) [1H3] is
one of the most profound concepts in contemporary
physics. RG theory has significantly deepened our under-
standing of the universality of critical phenomena [4], [5].
We now understand that each universality class is de-
scribed by an RG fixed-point (FP) theory under the RG
transformation, which theory can be represented [6, [7]
as a conformal field theory (CFT) [8]. Universal behav-
ior, such as critical exponents, can then be elucidated
from the CFT data, which include central charges, scal-
ing dimensions, and operator product expansion (OPE)
coefficients [9HIT]. It is therefore of paramount impor-
tance to identify this CFT data for a given ultraviolet
(UV) theory (such as a lattice model). [12].

While the analysis of the real-space RG transformation
has a long history [I3], tensor network renormalization
(TNR) [14H20] has recently emerged as a reliable numer-
ical implementation of the real-space RG. The applica-
tion of TNR has demonstrated that the tensor-network
representation of the Boltzmann weights converges to a
FP tensor, representing the RG fixed point.

There are several motivations for studying the FP ten-
SOrs.

First, we expect that the FP tensor encodes the CFT
data of the FP theory. Gu and Wen have established
a method for calculating the central charge and scaling
dimensions for fixed-point tensors, a procedure that has
since become standard [21]. It remains an intricate and
challenging problem, however, to compute the OPE co-
efficients of the FP CFT [22H25].

Second, determination of the fixed-point tensor can fa-
cilitate concrete realizations of the RG flow. Recently,
Kennedy and Rychkov initiated a rigorous study of the
RG using tensor networks [26, 27]. Employing simple
low-temperature and high-temperature fixed-point ten-
sors, they successfully demonstrated the stability of the
corresponding fixed points. Nevertheless, the applica-
tion of similar arguments to critical fixed points remains
unachieved, given that even their tensor network repre-

sentations are not fully understood.

Third, precise expressions of the fixed-point tensors
will serve as a robust benchmark for evaluating the preci-
sion of different tensor-network algorithms. A number of
algorithms boasting increased accuracy have been devel-
oped to determine the FP tensor, but there remain uncer-
tainties in selecting the superior option due to our limited
understanding of the exact expression of the fixed-point
tensor.

In this Letter, we introduce an exact tensor network
representation of critical RG fixed points, thereby solving
the problem of numerically determining the full defining
data of the FP CFT. We anticipate that our findings will
serve as a pivotal contribution in practical computations
of the FP theory on the one hand, and towards the rig-
orous substantiation of RG theory, on the other.

Fized-point tensor.— To simulate two-dimensional sta-
tistical models, we use the tensor network methods,
where the local Boltzmann weight is represented as a
four-legged tensor T(©). We obtain the transfer matrix
in the y-direction if we contract L copies of the four-leg
tensors along a circle in the z-direction; we obtain the
partition function Z(L,T(®) if we contract L x L copies
along the torus in the x,y-directions. In practical simu-
lations, the exact contraction of two-dimensional tensor
networks is notoriously challenging, often proving to be
exponentially hard. To address this, we consider a tensor
RG map that effectively coarse-grains the local tensors,
as illustrated below:




In the initial RG step, we apply the RG map to the orig-
inal Boltzmann tensor, denoted as 7%, to yield 7).
Subsequently, ™) is used to generate the next tensor in
the sequence. This RG map is designed to ensure that the
renormalized tensor remains a close approximation of the
original tensor group, while selectively discarding local
entanglement. While the specifics of the technical imple-
mentation vary depending on the chosen algorithms, it is
established that T(™ converges to a universal tensor, T,
at critical points. This universally convergent tensor, T*,
is referred to as the FP tensor. Its significance lies in its
close association with the RG fixed-point, reflecting the
underlying principles of scale invariance and universality
in the renormalization group theory.

If the original tensor T(©) has Dy symmetry(reflection
and 7/2 rotation), T™* also respects it. This allows the de-
composition of the FP tensor into a pair of two identical
three-leg tensors S*:
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The FP tensor T™ has gauge degrees of freedom that
change the basis of each leg. The insertion of the gauge
transformation (unitary operators) does not change the
spectral property of the FP tensor. In the following, we
fix the gauge so that each index of the FP tensor is la-
beled by the eigenstates of the Hamiltonian Ly + Lo on
a cylinder, where L,, (L,,) are the standard generators of
the left-moving (right-moving) Virasoro algebras. By the
state-operator correspondence, we can label these states
by a set of operators ¢,, among which we will find the
identity operator ¢; with the lowest scaling dimension.
[28] In tensor-network representations, the projector to
this basis can be found by diagonalizing the transfer ma-
trix as follows [21]:

{T%” = GyeTh (2)

In the following, we choose the states a, 3, . .
mary operators.

Main Results.— Let us now state the main results of
this paper. First, the three-leg tensor S* is proportional
to the three-point functions of the FP CFT on the com-
plex plane:

. to be pri-

S*
O = {po(—a5) P (i5) Py (0)) pi. (3)
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Second, the four-leg FP tensor determines the four-point
functions of the FP CFT as

(—=z7)dp(iwr)dy (x7)ds(—izr))pl  (4)
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These equalities hold when we choose the values zg =
e™* and xp = e™/?)2.

We can now reproduce the full defining data for the FP
CFT. Recall that we can extract the scaling dimensions
A, operators from Eq. . The remaining data is the
OPE coeflicients C,g, of the operators ¢,, which can
be extracted by applying a conformal transformation to

Eq. :
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Equation represents the equivalence of two differ-
ent decompositions (s- and ¢-channels) of the four-point
function into a pair of three-point functions, i.e. the cel-
ebrated crossing relation of the CFT.

To better understand Egs. , we apply conformal
transformations to the two equations to obtain

S*
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where Agoy = Aq + Ag + A, + As.

Equations naturally arise from the following ar-
guments. Once we fix the basis for the FP tensor, each
index corresponds to the states of CFT. Thus, the ten-
sor elements of the FP tensor are the coefficients of each
basis:

T = Tapy519a)|05)|94) | ds) (8)

On the other hand, the FP tensor itself is a lattice
representation of the identity operator 1. In Ref. [22] 25|
[29], they confirmed that local scale-transformation could
be realized using the FP tensors.

The scale transformation of a four-leg tensor, compris-
ing the FP tensor (colored blue) and isometry (colored
orange), results in primary operators emerging as eigen-
states. Notably, the scale-invariant FP tensor corre-
sponds to z, = 0. This specific correspondence is signifi-
cant, equating the FP tensor to the identity operator [30].
This observation leads us to a conceptualization where



the elements of the tensor can be expressed as an overlap
between the four-leg identity operator and four one-leg
primary operators as Tz 5 = (¢a¢5¢7¢5|¢>‘f—leg>. The
same argument can be applied to the three-leg FP ten-
sor S*. To calculate these values, we employ a technique
similar to the one described in the referenced literature,
specifically in Ref. [31], 32].

First, utilizing state-operator correspondence, the nor-
malized wave function of the first index of S*, for in-
stance, is created by inserting ¢, in the future infinity of
the cylinder as follows:
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where [T} represents the ground state corresponding to
the identity operator. Subsequently, the FP tensors S*
and T™ can be expressed by the path integral on the man-
ifolds g and X7, respectively, as illustrated in Fig.
Then, the FP-tensor elements are

f;fj = (6a(00)Bs(i00)n (—(1+ Do))zsr  (9)
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Y.s and X7 can be mapped the complex plane w by using
Mandelstam mapping [33] [34],

zs = %[—ln(w —i)—iln(w+1)+ (1 +4)Inw], (11)

ZT_QI;[ln (Zirz)ﬂln (E)] (12)

Each operator in the z-coordinate transforms accordingly
as
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where || = ‘(2%)7llimz—>(oo 2= /(LICD |4/ (2)], and

(oo is the coordinate of the index in the original manifold.
The resulting |J,| are e~™/* and 2e~7/2, respectively,
being consistent with Eqs. (6{{7). Detailed calculations
are presented in the supplemental material.

Numerical fized point tensor.— Let us provide nu-
merical confirmations of our main results using Levin’s
tensor renormalization group (TRG) [14] and Evenbly’s
TNR [I7]. TRG and TNR are numerical techniques that
calculate effective L x L tensor networks. In our study,
our interest lies in computing those of large system sizes
to obtain a tensor that is as close as possible to the FP
tensor. However, performing an exact contraction is ex-
ponentially difficult, prompting us to focus on extracting

z=—(1+1i z=—00

FIG. 1. The path-integral representation of the tensor ele-

ments (a) S5, and (b) Tag,s. The fixed-point tensor lives

at the center of cylinders, and surrounding cylinders are bra
vectors of primary fields. Since the FP tensor corresponds to
the identity operator, “insertion of no operator” is illustrated
as empty space. This identity operator at the origin in z co-
ordinate will be mapped to the infinity in w.

low-lying spectral properties. TRG/TNR seeks to cir-
cumvent this issue by employing the principles of the
renormalization group theory. Each coarse-graining step
entails decompositions and recombinations. Truncation,
parameterized by the bond dimension D, is performed
to maintain the tractability of numerical computation.
However, it is important to note that this scheme is con-
sidered ezxact when D = oo, and thus, employing larger
D improves the numerical accuracy. Additionally, we
impose special Dy symmetry in TRG. The details can
be found in the supplemental material. It is crucial to
acknowledge that the TRG method is known to exhibit
instabilities, primarily due to its inherent limitations in
eliminating certain types of local entanglement. In con-
trast, TNR, which includes a local entanglement filtering
process, typically demonstrates superior performance in
extracting infra-red information. This enhanced capabil-
ity of TNR is attributed to its more effective handling
of local entanglement, making it a more robust approach
for studying systems at criticality.

Tests on critical lattice models.—Let us first test the
value rg = ¢™/* in Eq. @, by computing xg from the
critical Ising and 3-state Potts models. Given Eq. @,
we can numerically compute the OPE coefficients Co g+
from Eq. . We define zg(L) by solving Eq. to be

A 1/(Aat+As+Ay)
: (2 WC&B”) (13)
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Each model has a primary operator ¢, called the energy
and the thermal operator, respectively. Since C¢ =
1, zs(L) can be computed from the finite-size three-leg
tensor Sec1(L).

Figure [2| shows the value of zg(L) obtained from TRG
and TNR at the bond dimension D = 96 and D = 40,
respectively. The numerically derived zg(L)’s for both
models converge to the theoretical value of e™/4. The no-
ticeable increase in amplitude for the 3-state Potts model
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FIG. 2. Estimation of xs(L) from Levin-TRG(D = 96) and
Evenbly-TNR(D = 40). The values of z(L) from the Ising and
3-state Potts model converge to the theoretical value xs =
e™/* denoted by a black dotted line. We plot zs = 2.23035
obtained from Loop-TNR [I7] on the critical 9-state clock
model [23] with a lime dashed line. The 3-state Potts model
exhibits a deviation for L > 100 because simulating systems
with higher central charges involves larger numerical errors.

by TRG at L > 102 is attributed to the effect of the fi-
nite bond dimension and the remaining local entangle-
ment. It is worth noting that our value for xg deviates
slightly from the value xg = 2.23035 [35] from a previ-
ous study on the 9-state clock model [23]. We specu-
late that this minor deviation is due to the finite bond-
dimension effect because higher central charges lead to
more pronounced numerical errors [24]. For the system
size L = 2048 and bond dimension D = 96, we ascertain
xg = 2.193257 for the Ising model, a value remarkably
close to e™/* = 2.193280. Once we are certain of the value
zg = e™/*, we can verify Eq. @ for all the OPE coeffi-
cients, which are computed from the three-leg tensor S
as

Copy(L) = (V2e™/)RatBotBag=0ag o (L),  (14)

The results for the critical Ising model are exhibited in
Fig.Bl The obtained OPE coefficients are consistent with
our theory with the finite-size effects of expected scaling.
The finite-size effect originates from the twist operator
at the branch points [3T], B2], whose scaling is universal.
The detailed analysis is discussed in the supplemental
material. The same plot for the critical three-state
Potts model is shown in the supplemental material.
While it has less accuracy due to the stronger finite
bond dimension effect for higher central charges, the re-
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FIG. 3. The OPE coefficients of the critical Ising model eval-
uated by setting zs = ™. The black dotted lines denote
the theoretical values 0, 0.5, and 1. The data points, denoted
by filled circles ”o” and crosses ”+,” are obtained from Levin-
TRG(D = 96) and Evenbly-TNR(D = 40), respectively.

sult is still consistent with the expected OPE coefficients.

We next computed four-point tensors T35 and com-
pared with the theoretical values from Eq. @, where the
explicit forms of the four-point functions of the critical
Ising model are listed in the supplemental material. The
result is consistent up to two digits for most tensor el-
ements, as shown in Table m The exceptions are Typ00
and T,,11, whose numerical values deviate approximately
5% from the theoretical values. As for T, ¢1, the devia-
tion is almost 24% [36]. This discrepancy, however, can
be attributed to finite-size effects and becomes negligible
for infinite system sizes. To illustrate this, we define the
finite-size deviation as (do not confuse with temperature)

0T apys = Tapys — Tapys (L)

Figure || presents the values of 07T,500(L), 0Tpge1(L),
and 67,,11(L) obtained from TRG calculations. A clear
power-law decay with respect to the system size is ob-
served, supporting the claim that the large deviations
for those elements are finite-size effects. However, it
is worth mentioning that the exponent closely approxi-
mates ~ L~1/3 hinting at the existence of an underlying
theory that might account for this.
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TABLE I. The comparison of the numerically-obtained fixed-
point tensor Tozys at L = 2048 and the exact four-point func-
tion (¢a(—z7)@s(ixT)Py(2T)ps(—ixT))p1 Of the Ising model
with 7 = e”/2/2.
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FIG. 4. The finite-size effect of the fixed point tensor

0T0pys = (Pad; By Ps) — Tapys (L) from Levin-TRG(D = 96,
red) and Evenbly-TNR(D = 40, blue). We plot 6Tups of
cooo(“4"), ooel(“x"), and ooll(“x”) with different colors
depending on the algorithm. The difference converges to zero
for L — oo with the power-law ~ L=1/3,
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We provide detailed calculations and algorithms of the conformal mappings and TRG, respectively,
in the main text. In addition, we discuss the universal finite-size correction of the tensor elements.

A. Conformal mapping of S

The three-leg tensor S; 5. represents the three-sided thermofield double state [1] corresponding to the geometry in
Fig. 1(a) in the main text. This manifold Xg is mapped to the plane by a conformal mapping

z:%[—ln(w—i)—iln(w+1)+(1+i)lnw], (1)

which maps the three points in Xg, (21, 22, 23) = (00,100, —(1 + )00), to (w1, ws,w3) = (i,—1,0). Then, the tensor
element is
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where J; is the Jacobian of the conformal mapping (1). The initial states are
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The Jacobian can be computed as

Using Eq. (10) in the main text, the first and second term is

e?™*/L — exp[ln wuiz +iln wzi 1], (5)
d L[ 1 i (1+i) ©)
dw 27| w—i w41 w ’

Substituting these into Eq. (4),
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In the same way, we can show |Jo| = |J3| = e~™/4. Thus, the 3-leg tensor is

by = € FAaFAEAD (6 (1) (i) (0)) 1. (8)



FIG. 1: The contraction of the fixed-point tensors. We obtain S from TRG and combine together to make S* and T™. In this

way, T respects reflection symmetry along the dotted lines in addition to Cy4 rotation symmetry.

B. Conformal mapping of T

The conformal mapping from the four-sided thermofield double state is
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To compute the Jacobian, we compute
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The Jacobian is then computed similarly as before:
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The four-point function thus transforms as
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C. Dj-symmetric TRG
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We use the TRG scheme which aligns closely with the original paper’s methodology [2]. In principle, singular-value
decomposition (SVD) of the four-leg tensor should yield two identical symmetric tensors, given the Dy symmetry of
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FIG. 2: The finite-size corrections 6Cqp~(L) obtained from the numerical simulation of the critical Ising model. The numerical
results for higher energy levels 0Ccc1(L) and 0Ciec(L) suffer from finite-D effects for L > 100. The scalings of the finite-size
corrections are nevertheless universal, which is consistent with Table IIT in Ref. [3]

the original tensor. However, numerical errors sometimes make these two tensors non-identical. To mitigate this,
we consistently select one of the three-leg tensors and supplement the other with its reflection. By adopting this
approach, the fixed-point tensors, depicted in Fig. 1, maintain the D4 symmetry at every RG step by construction.

D. Four-point function of the critical Ising model

Here, we list the four-point function of the Ising model. Given the four coordinates z; and its cross-ratio x =
(212234)/(213224), the four-point functions of the Ising CFT are
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The functions above are used to evaluate the analytic FP tensor elements in the main text.

E. Universal finite-size corrections

Here, we discuss the finite-size corrections to Eq. (13) in the main text. The finite-size corrections of the OPE
coeflicients are defined as

0Capy(L) = |Capy = Capy(L)], (14)

where Cqp(L) is defined in Eq. (13) in the main text. We found that §C,s-(L) exhibits a universal power-law decay
as

§Clapy (L) ~ LPo57. (15)
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FIG. 3: The OPE coefficients of the critical three-state Potts model evaluated by setting s = ¢™*. The black dotted lines
denote the theoretical values 0, 0.546, and 1 [4]. The data points, denoted by filled circles ”o” and crosses ”+,” are obtained
from Levin-TRG(D = 88) and Evenbly-TNR(D = 40), respectively.

Our numerical results suggest pogy = 1/2 for (o, 8,7) = (1,1,¢€), (1,¢,1), (€, ¢€.€), (1,0,0), (0,€,0), (0,0,1), and
(0,0,€), and pagy = 2 for (o, 8,7) = (¢,¢,1) and (1, ¢, ¢€) as shown in Fig. 2. Similar universal scalings were discussed
in Ref. [3], where they considered the overlap of critical wavefunctions Aapy = (¢3*|$4¢%). The three wavefunctions
are defined on a ring with a circumference of L1, Ly, and L3 = L1 4+ Lo, respectively, and the lower indices are the
label of the corresponding primary states. Ref. [3] found the overlap of wavefunctions to be
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where p, s+ is the leading finite-size correction and A((f /;v is a prefactor that is independent of Ls.

Our scaling exponents p,g+ in Eq. (15) coincide with those from the previous work in Eq. (16) for all fusion channels
(see Table IIT of Ref. [3]). This universal scaling can be explained by considering rings 1 and 2 as an orbifold theory.
The scaling pagy = 1/2 is then attributed to the difference in the scaling dimensions of the orbifold theory, which is
A./2 =1/2. (See Ref. [3] for details.) Similarly, we conjecture that the universal scaling for 67,55 ~ L™/3 can be
understood by considering the three of four legs to be an orbifold theory.

I. THE THREE-STATE POTTS MODEL

Here, we present the OPE coefficients obtained from numerical simulations of the classical critical three-state Potts
model. The low-lying primary states of this model are the identity operator ”1”, the two spin operators ”o,” and the
thermal operator ”¢,” whose scaling dimensions are 0, 2/15, and 4/5. The non-trivial coefficients is Cypc = 0.546 [4].
Figure. 3 exhibits the numerical results from Levin-TRG and Evenbly-TNR as the Ising model in the main text.
TRG/TNR schemes, generally speaking, have finite-D effects for larger system sizes, and this effect is larger in higher
central charges. Since the central charge ¢ = 0.8 of the three-state Potts model is larger than ¢ = 0.5 of the Ising
model, these numerical errors manifest in the data plots. In particular, the TRG data is unstable due to CDL tensors
and quickly diverts from the theoretical values. However, Evenbly-TNR/’s results still converge to the correct values.
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