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Global Tensor Network Renormalization for 2D Quantum systems:
A new window to probe universal data from thermal transitions
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We propose a new tensor network renormalization group (TNR) scheme based on global op-
timization and introduce a new method for constructing the finite-temperature density matrix of
two-dimensional quantum systems. Combining these two into a new algorithm called thermal tensor
network renormalization (TTNR), we obtain highly accurate conformal field theory (CFT) data at
thermal transition points. This provides a new and efficient route for numerically identifying phase
transitions, offering an alternative to the conventional analysis via critical exponents.

Introduction Understanding emergent phenomena in
quantum many-body systems is a central goal of con-
densed matter physics [I}, [2]. These phenomena typically
involve strong correlations that lie beyond the reach of
conventional mean-field or perturbative methods. To in-
vestigate such systems, researchers often rely on lattice
models. However, due to the exponential growth of the
Hilbert space with system size, exact diagonalization is
limited to small systems. To overcome this challenge,
a variety of numerical techniques have been developed.
One of the earliest and most influential is the numerical
renormalization group (NRG) [2], introduced by Wilson.
NRG is based on a recursive blocking of local Hamil-
tonians combined with truncation of the Hilbert space,
enabling simulations beyond the reach of exact diago-
nalization. It marked a significant milestone by success-
fully solving the Kondo problem and demonstrating the
power of tensor-network-based approaches. Nevertheless,
NRG’s accuracy remained limited, particularly for sys-
tems exhibiting extended entanglement. This shortcom-
ing was later addressed by the density matrix renormal-
ization group (DMRG) [3], introduced by White, which
dramatically improved both accuracy and efficiency for
one-dimensional quantum systems. The key innovation
of DMRG is that it incorporates the Hamiltonian of the
entire system when performing truncation using so-called
“environments”, which encode the rest of the (infinite)
system in a finite manner. This perspective leads to a no-
tion of global optimization using the environment and in-
spired several one-dimensional variational algorithms [4-
g].

In recent years, significant efforts have been devoted to
developing projected entangled pair state (PEPS) algo-
rithms for two-dimensional quantum systems [9HIT]. In
stark contrast to the one-dimensional case, these systems
pose substantial challenges. For example, even comput-
ing the norm of a non-uniform random PEPS becomes
computationally intractable, as the exact contraction is
a #P-hard problem [12]. This calls for the development
of efficient approximation schemes. Tensor renormaliza-

tion group (TRG) [13] [I4] and tensor network renormal-
ization (TNR)[I5H22] have emerged as a key framework
for addressing this challenge and have seen considerable
progress over the past decade. However, most existing
TNR algorithms rely on local optimization procedures,
which inherently limit the accuracy of simulations in
two dimensions. Overcoming this limitation remains a
critical objective for advancing the simulation of two-
dimensional quantum systems.

In this Letter, we address this issue by proposing
a new TNR algorithm based on global optimization.
We demonstrate that our global contraction scheme sig-
nificantly improves accuracy compared to conventional
methods. Building on this foundation, we introduce an
efficient contraction method for three-dimensional ten-
sor networks representing finite-temperature density ma-
trices of a two-dimensional quantum system. Our ap-
proach enables the extraction of conformal field theory
(CFT) data from thermal transitions. Notably, previous
attempts to simulate two-dimensional quantum systems
under periodic boundary conditions (PBC) [23, 24] or
at finite temperature [25H27] have faced significant ob-
stacles. Our method overcomes both challenges simul-
taneously, opening a new avenue for exploring quantum
critical phenomena in two dimensions.

TNR with global optimization TRG, developed by
Levin and Nave [13], is a widely used method for com-
puting the partition function of two-dimensional classi-
cal statistical systems. In TRG, the partition function
is expressed as a contraction of four-leg tensors encod-
ing the local Boltzmann weights. Since the exact con-
traction of a two-dimensional tensor network is expo-
nentially costly, TRG performs successive coarse-graining
steps that reduce the number of tensors by half at each
iteration through a sequence of decompositions and re-
combinations. After several such steps, the network con-
sists of only a few tensors, which can then be contracted
exactly. To keep the procedure numerically tractable,
TRG applies truncation during each decomposition step
using singular value decomposition (SVD), minimizing
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FIG. 1. (a) The objective of optimization during tensor de-
compositions for TRG and TNR. TNR improves the accuracy
by incorporating a larger unit cell. (b) Global TNR decom-
poses tensors to minimize the difference of the whole tensor
networks. (¢) A pictorial definition of 0A. It is defined as a
difference of the eight-leg tensor. (d) The difference of the
whole tensor network J f is approximated by the expectation
value of the error with respect to the environment computed
from CTMRG to first order.

the error in the local approximation. This procedure is
illustrated in the top-left panel of Fig. [I]

TNR can be viewed as a generalization of the local
approximation in TRG to a two-by-two unit cell. This
extension yields more accurate approximations for larger
system sizes and improves the overall precision of the
tensor network contraction as it incorporates the crucial
feature of entanglement filtering. When using two-by-
two unit cells, redundant loop-like degrees of freedom
can appear on the plaquettes formed by the four tensors.
These structures are known as corner double line (CDL)
tensors. Gu and Wen proposed a way to remove these de-
grees of freedom called entanglement filtering [I5]. Other
prominent TNR algorithms, like Loop TNR, also include
an entanglement filtering step [18]. TRG fails to remove
these non-universal, short-range contributions . From the
renormalization group perspective, such CDL structures
encode short-scale physics and should be systematically
removed during the coarse-graining process. This is pre-
cisely what TNR achieves.

Despite their advantages, most TNR schemes still rely
on local optimization. Just as DMRG improves upon
NRG by incorporating the global environment, TNR, can
be further enhanced by considering the full tensor net-
work during decomposition. The key idea is to minimize
the global error introduced when decomposing a tensor,
as illustrated in the top-right panel of Fig. In this
setup, we extend beyond a two-by-two unit cell, with the
surrounding tensors indicated by dotted lines.

Unfortunately, evaluating the full contraction differ-
ence exactly is intractable. Instead, we perform a Taylor

TABLE I. The free energy of the classical 2d Ising model at
T =T, compared with the exact solution.
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FIG. 2. The CFT spectrum obtained from the transfer matrix
spectrum of the classical Ising model at critical temperature.
The red and blue crosses, respectively, correspond to the cen-
tral charge and scaling dimensions.

expansion of the global error with respect to the variation
in the two-by-two unit cell, denoted by d A. In the infinite
system limit, the first-order term in |§A| corresponds to
the expectation value (i.e., the one-point function) of § A,
which can be efficiently approximated using environment
tensors.

We compute these environment tensors using
the corner transfer matrix renormalization group
(CTMRG) [28], applied to a two-site unit cell. We
denote the resulting environment tensor as I'eny. To
ensure the validity of the Taylor expansion and pre-
vent uncontrolled deformations, we also include the
Hilbert-Schmidt norm of 0 A in the cost function.

The global optimization amounts to minimizing the
following cost function:

C(A) = [SAI* + | Cenv 6 AJ?, (1)

where « is a weighting parameter controlling the contri-
bution of the environment term. In this study, we set
a=1.

During the optimization, we impose spatial Cy ro-
tational symmetry and reflection symmetries along the
z and y axes within the two-by-two unit cell. These
symmetries relate the white three-leg tensors of Fig.
and effectively fix their gauge. This gauge fixing im-
proves numerical stability, particularly in critical sys-
tems [I8 29, B0]. After entanglement filtering, the
cost function can be efficiently minimized using stan-
dard gradient-based optimization techniques.  Table [I]
presents our benchmark results for the classical Ising
model at criticality using bond dimension y = 16. We
achieve an improvement of one to two digits in the ac-
curacy of the free energy. Moreover, as shown in Fig.



the critical spectrum remains stable up to 40 renormal-
ization steps. While similar ideas of global optimization
have previously been applied to TRG [31, 2], they did
not yield a stable critical spectrum. Our results demon-
strate that the combination of global optimization with
TNR is crucial for accurately capturing physical proper-
ties at criticality.

CFT data from thermal transitions A key applica-
tion of our method is the efficient simulation of two-
dimensional quantum states at finite temperature. We
represent the thermal density matrix p = e ## as a
contraction of a three-dimensional tensor network, where
the Hamiltonian in the exponent is expressed as a pro-
jected entangled-pair operator (PEPO). Although the
PEPO has a finite bond dimension, its exponential gen-
erally does not. However, for small values of 3, the
cluster expansion method yields an accurate PEPO rep-
resentation [33H35]. We call the tensor that generates
this translationally invariant PEPO an elementary ten-
sor. By decomposing the imaginary-time evolution into
small steps e~ RH , the full thermal density matrix can be

N
B
.y

expressed as an N-fold product p = (e . Conse-

quently, evaluating the density matrix on a system of size
(Lz, Ly, B) reduces to contracting a three-dimensional
network of size (L, Ly, N) composed of elementary ten-
SOTS.

The contraction of such three-dimensional networks is
generally intractable, typically requiring computational
costs on the order of O(x"—x!!). Alternatives include
local contractions using HOTRG [14] or ATRG [36] and
finding the boundary PEPS of the 3D tensor network [37].
In contrast, our method achieves a significantly reduced
cost of O(x%), comparable to the complexity of HOTRG
in a classical two-dimensional system.

In the following, we propose an efficient contraction
scheme. First, we construct the elementary PEPO ten-
sor using a cluster expansion for small AB. Then, we
stack these tensors sequentially along the imaginary-time
direction to form a column tensor. At each step, an ele-
mentary tensor is contracted linearly on top of the pre-
viously renormalized column tensor, followed by a trun-
cation of the bond dimensions of the four bonds in the
spatial direction via a projection [I8| [38], [39]. This pro-
jection minimizes the cost function illustrated below:

d
Xinit —
min - U Ut
- .
(2)

It is worth noting that the series of projections ap-
plied during the linear stacking results in a tensor net-
work structure that resembles an MPS [40] along the
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FIG. 3. Results for the two-dimensional transverse field Ising
model when keeping x = 12 in the imaginary-time evolution
and x = 10 in performing global TNR. (a) The finite-T" phase
diagram. The color map indicates the central charge, where
¢ = 1/2 at the thermal transition line. The transition line
approaches the quantum critical point, indicated by a white
dotted line, as T approaches zero. (b) The transfer matrix
spectrum of the finite-T" density matrix at the transition point
(B,X) = (0.472,1.1). The dotted lines indicate the theoretical
Ising CF'T spectrum.

imaginary-time axis [41], [42](see also Fig. 8 of Ref. [42]).
Further optimization of these projectors by DMRG-like
sweeping can increase the accuracy [43]. After N steps,
we get a column PEPO representing 5 = NAfS. Second,
we trace out the physical indices. The column tensor
ends up becoming a 2D classical tensor. Finally, we per-
form TNR for n steps in the z-y plane. The partition
function with PBC is obtained by contracting the open
legs in the = and y directions. Moreover, the CF'T infor-
mation is accessible through the transfer matrix of the
renormalized tensor.

We apply this scheme to the transverse field Ising
model in two dimensions, defined as

H:—Zafaj—)\ZUf. (3)
(i,) @

This model exhibits a quantum phase transition at zero
temperature, located at \. ~ 3.04438 [44, [45]. At fi-
nite temperature, thermal phase transitions emerge and
are characterized by the two-dimensional Ising CFT. Fig-
ure a) presents the finite-temperature phase diagram
obtained from our method, where the color scale in-
dicates the effective central charge extracted from the
transfer matrix after 12 RG steps. Along the critical
curve, the central charge is nearly exactly ¢ = 0.5, con-
sistent with the CF'T prediction. Moreover, this 2D CFT
curve approaches the quantum critical point in the " — 0
limit.

In the right panel (b), we show the detailed spectrum
of a transition point at (A,8) = (0.472,1.1). The ex-
tracted scaling dimensions and central charge are highly



accurate even at higher energy levels. For example, we
obtain ¢ = 0.49996 at 12 RG steps. This result highlights
the remarkable accuracy of our TNR-based approach for
finite-temperature quantum systems.

Our method achieves this efficiency by keeping the
bond dimension in the imaginary-time direction fixed at d
during the linear construction of the column tensor. This
significantly reduces the computational cost compared to
conventional three-dimensional TRG schemes [14].

Conclusion and Outlook In this Letter, we develop a
new TNR algorithm based on global optimization. Anal-
ogous to how DMRG improves upon NRG, our scheme
achieves significantly more accurate contractions of two-
dimensional tensor networks. This enhanced accuracy
extends naturally to the simulation of two-dimensional
quantum systems at finite temperature, represented as
three-dimensional tensor networks. Upon coarse-graining
along the imaginary-time direction and tracing out phys-
ical indices, the three-dimensional network reduces to an
effective two-dimensional network. Applying our TNR
method to this tensor network enables direct extrac-
tion of CFT data from the transfer matrix. While it
is known that entanglement filtering is essential for ac-
curacy in TNR, this step is often neglected in variational
approaches such as the gradient-based optimization of
PEPS, which target the thermodynamic limit. In con-
trast, our method operates at finite system sizes, where
universal data can be accessed with controlled errors with
minor finite bond dimension effects [46], 47].

Notably, our approach does not require full three-
dimensional entanglement filtering as in 3D TNR, but
two-dimensional filtering suffices [48] [49]. This opens a
practical route to studying thermal transitions in chal-
lenging models whose finite-temperature phase diagrams
remain unresolved, such as the .J;—Js model, which we
plan to investigate in future work.

Our current method focuses on two-dimensional criti-
cality and spatial scale invariance, thereby naturally fil-
tering out scale-invariant behavior from quantum criti-
cal points. In future developments, we aim to extend
the method to capture genuine three-dimensional criti-
cality, characterized by scale invariance in both spatial
and imaginary-time directions.
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FIG. 4. Examples of estimation of transition temperature for
A =0 and 1.1. The cross, x-cross, and solid circles represent,
respectively, the effective central charge obtained from 10-12
RG steps. The transition temperatures are determined from
the two largest points, as indicated by the black dotted lines.

Estimation of transition temperature

Here, we present the methodology for extrapolating
the transition temperature. In constructing the column
tensor, we discretize the imaginary-time evolution. As a
result of this discretization, the simulation does not al-
ways align precisely with the true critical temperature,
and the extracted effective central charge deviates from
its theoretical value. This deviation becomes amplified
under repeated RG transformations and eventually van-
ishes as the system flows away from criticality. Therefore,
we terminate the RG procedure at the 12th step.

Figure [ shows the numerically obtained effective cen-
tral charge at A = 0 and A = 1.1 near their respective
critical points. The cross, x-cross, and solid circles de-
note results after 10, 11, and 12 RG steps, respectively.
As the system is coarse-grained, the peak in the effective
central charge becomes sharper. Notably, for A = 0, the
data points lie slightly off the peak and thus exhibit a
decay in the central charge with further RG steps.

To estimate the transition temperature, we take the
midpoint between the two temperatures corresponding
to the largest effective central charge values. In prac-
tice, this estimate can be further refined by comput-
ing a weighted average of temperatures, where each is
weighted by the inverse of its deviation from the ideal
central charge value.
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