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ABSTRACT

We propose the integration of an energy-based finite-size scaling methodology
with tensor network renormalization (TNR) techniques. TNR, serving as a numer-
ical implementation of real-space renormalization group (RG) methods, provides
a pathway to access the low-lying energy spectrum of various systems. By meld-
ing TNR with conformal perturbation theory, we can effectively calculate running
coupling constants. This combined methodology is particularly valuable in prac-
tical calculations, as it adeptly navigates around the numerical errors commonly
encountered in TNR applications.

A primary objective of numerical simulations in the study of lattice models is
often the precise determination of their phase diagrams. The demarcation of phase
transition points within these diagrams often necessitates simulations of systems
with very large sizes. For example, accurately identifying the phase boundary of
the Ising model through spontaneous magnetization typically requires simulating
thousands of lattice sites. While TNR is capable of handling large system sizes, it
is also known to suffer from amplified numerical errors as the size of the system
increases.

In contrast, our proposed methodology requires only a few steps of RG, thereby in-
ducing fewer numerical errors and reducing computational costs. The energy-based
finite-size scaling approach does not rely on large system sizes, unlike conventional
methods that use observables such as magnetization and heat capacity to determine
phase transitions. This approach is not only more efficient but also more resilient to
the challenges posed by the scale of the simulations, offering a significant advantage
in the study of critical phenomena in lattice models.

Additionally, we will delve into the origins of numerical errors in TNR simulations
from a field-theoretical perspective. This analysis will shed light on how these errors
scale with the approximation parameter, denoted as 𝐷. Understanding this scaling
is critical for accurately estimating and managing errors in simulation results.

Through the application of this methodology, we aim to provide a more accurate
and computationally efficient means of exploring phase transitions and the critical
properties of lattice models, enhancing our understanding of these complex systems.

In the subsequent discussion, we delve into the tensor structure of fixed points in
the context of lattice models. A significant challenge in this area arises from the
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effects of finite bond dimensions, which make the true fixed-point tensor practically
unattainable through direct numerical methods. To circumvent this issue, we adopt
an analytical approach, employing conformal mappings to study the fixed-point
tensors.

This analytical exploration leads to a revealing insight: the tensor elements of the
fixed-point tensor correspond to the four-point functions of primary operators within
the framework of conformal field theory (CFT). This correspondence is not just a
theoretical conjecture; it is corroborated by empirical observations showing that
tensors renormalized for finite sizes tend to align with our theoretical predictions.

The significance of this finding cannot be overstated. It suggests that the tensor
representations of fixed points in lattice models embody the universality of non-
trivial infrared (IR) physics at the lattice level. Our approach thus is not only a
new solution to a decade-old problem, but also bridges the gap between the abstract
theoretical constructs of CFT and the practical, computable structures in lattice
models. By demonstrating this universal behavior, we provide robust support for
the concept of universality in critical phenomena, particularly as it manifests in the
intricate world of lattice models.

Through this investigation, we aim to offer a deeper understanding of the funda-
mental principles underlying critical phenomena, specifically highlighting how the
universal aspects of CFT are reflected in the practical, numerical realm of lattice
model simulations.
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C h a p t e r 1

INTRODUCTION

Phase transitions hold a particular fascination in the field of statistical mechanics
due to their display of universality. This universality is most notably observed
in the behavior of systems undergoing continuous phase transitions, which are
characterized by the divergence of derivatives of the partition function. These
divergences are quantified by critical exponents, which are key indicators of the
system’s behavior near the critical point.

What makes these critical exponents particularly intriguing is their universality
across different physical systems. Despite the diverse nature of these systems,
the critical exponents of certain systems tend to exhibit the same values. For
instance, a striking example of this universality is seen when comparing the liquid-
vapor transition in water with the ferromagnetic to paramagnetic transition in three-
dimensional magnets. Remarkably, these vastly different systems share the same
critical exponents. However, this concept of universality in phase transitions presents
a somewhat counter-intuitive picture at first glance. Consider the stark differences
between substances like water and magnets: water is composed of hydrogen and
oxygen, while magnets can be made from materials like neodymium. Moreover, the
temperatures at which these substances undergo phase transitions are vastly different.
Imagine measuring the critical exponents of water in a national laboratory in the
U.S. and then measuring those for magnets in a makeshift lab in your basement.
Despite the differences in substances, environments, and methodologies, the results
would be surprisingly consistent.

This phenomenon almost suggests that nature possesses an innate understanding of
the essence of phase transitions. It is as though the underlying principles governing
these phenomena inherently “know” to discard irrelevant details, focusing instead
on fundamental aspects that are common across diverse systems. This remarkable
aspect of universality in phase transitions not only challenges our intuitive under-
standing but also highlights the profound simplicity and elegance with which nature
operates at a fundamental level.

Nature’s method of simplifying complex phenomena can be likened to how we
perceive images in our daily lives. Consider, for example, the iconic Windows XP
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wallpaper “Bliss1.,” which depicts a serene landscape of a green hill and blue sky.
At first glance, we see just these broad elements. However, upon closer inspection,
one might notice finer details like yellow flowers dotting the hill. With an even
more focused view, like through a microscope, one could observe bees around these
flowers or even delve into the atomic structures of these elements.

Yet, from a normal viewing distance, these minute details are effectively invisible.
Our perception simplifies the scene, focusing on the most significant elements while
“ignoring” the smaller, less impactful ones. This is akin to how we approach phase
transitions in statistical mechanics. In the study of phase transitions, we often
consider the thermodynamic limit, which implies observing the system as if it were
infinitely large. This perspective requires us to “step back” and view the system from
a great distance, thereby making any finite-sized clusters or features with limited
correlation lengths appear increasingly smaller and less significant.

This “stepping back” in observing physical systems is analogous to observing the
“Bliss” wallpaper from a distance. Just as we see only the broad strokes of the
hill and sky rather than the minute details, in phase transitions, the focus is on
macroscopic properties that emerge when viewing the system in its entirety, from
afar. Small-scale variations and details become irrelevant at this scale, allowing us
to discern the universal aspects that dominate the behavior of the system as a whole.
To quantitatively explore how systems appear to transform when we “step back" and
observe them from a larger scale, the renormalization group (RG) theory becomes
indispensable. This chapter is dedicated to reviewing RG theory, with a specific
emphasis on its application in statistical mechanics.

RG theory provides a framework to understand how the behavior of physical
systems changes across different scales. It allows us to systematically “zoom out”
from the microscopic details and observe how the collective properties of a system
evolve. This perspective is crucial for grasping the essence of phase transitions, as it
reveals the underlying universalities that manifest when microscopic details become
less relevant at macroscopic scales.

Finally, as a prelude to delving into the detailed theoretical aspects of RG theory and
its applications in statistical mechanics, it can be beneficial for readers to visualize
how the concept of “seeing from a distance" manifests in physical systems. To aid in

1It was a wallpaper of my first computer.https://en.wikipedia.org/wiki/Bliss_
(image). They now have a 4K version of it. https://msdesign.blob.core.windows.net/
wallpapers/Microsoft_Nostalgic_Windows_Wallpaper_4k.jpg
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this visualization, we recommend viewing a short YouTube video 2 that illustrates
how it happens in the Ising model.

1.1 Renormalization group theory in statistical mechanics
In this section, we delve into critical aspects of phase transition and RG theory

within the realm of statistical mechanics, using the Ising model as a foundational
example. A key element in this context is the partition function, particularly when
expressed in the transfer matrix formalism, and its intricate relationship with the
corresponding action or Hamiltonian. This conceptual framework, central to our
discussion, paves the way for a natural extension to and incorporation within the
tensor-network language, which will be explored in the following section.

We begin our exploration with the classical one-dimensional Ising model, a fun-
damental and illustrative example in the study of magnetism. In this model, local
spin states are characterized by a binary variable, 𝜎𝑖 = ±1, where each spin can be
thought of as a miniature magnet. The values of ±1 can be metaphorically equated
to the north (N) and south (S) poles of a magnet. This analogy is useful in visualiz-
ing how each local spin, akin to a tiny magnet, contributes to the overall magnetic
properties of the system. In the one-dimensional Ising model, each spin aligns
along a single direction in an array. By considering these local spins collectively,
we gain insight into the emergent magnetic behavior of the entire system, where
the alignment or randomness of these “mini magnets" underpins the macroscopic
properties observed. Specifically, the system is classified as ferromagnetic if the
average spin, calculated as 1

𝑁

∑𝑁
𝑖=1 𝜎𝑖, is non-zero. This non-zero average indicates

a net alignment in one direction, characteristic of ferromagnetic ordering. Con-
versely, if this average equals zero, 1

𝑁

∑𝑁
𝑖=1 𝜎𝑖 = 0, the system is said to be in a

paramagnetic state. In this state, the spins are oriented randomly, resulting in no net
magnetization. This binary representation not only simplifies the analysis but also
provides profound insights into the underlying mechanisms of magnetic interactions
and phase transitions.

In the realm of statistical mechanics, the behavior of spins in the Ising model is gov-
erned by local Boltzmann weights. The probability of a specific spin configuration
occurring is quantified by these Boltzmann weights. These weights are mathemati-
cally defined as exp[−𝛽𝜖{𝜎𝑖}], where 𝛽 = 1/𝑇 represents the inverse temperature,
and 𝜖{𝜎𝑖} denotes the energy associated with a particular spin configuration. Con-

2https://www.youtube.com/watch?v=MxRddFrEnPc&t=1s
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sequently, the probability of observing a certain configuration,𝑝{𝜎𝑖} , is calculated
using the formula 𝑝{𝜎𝑖} =

exp[−𝛽𝜖{𝜎𝑖}]
𝑍 (𝛽) . Here, 𝑍 (𝛽) =

∑
{𝜎𝑖} exp[−𝛽𝜖{𝜎𝑖}] is the

partition function, which serves as a normalization factor ensuring that the sum of
probabilities over all possible configurations equals one.

The energy of the Ising model in periodic boundary condition (PBC) is defined as

𝜖{𝜎𝑖} = −𝐽
𝑁−1∑︁
𝑖=1

𝜎𝑖𝜎𝑖+1 − 𝐽𝜎𝑁𝜎1. (1.1)

This definition ensures that the energy is minimized when all spins are aligned in
the same direction, making this configuration highly favored at low temperatures.
In contrast, at higher temperature regimes, where 𝛽 ∼ 0, the probability becomes
ignorant of the energy configuration. As a result, under these conditions, the prefer-
ential status of spin alignment dictated by lower energy considerations diminishes.
Instead, the system tends to favor states that are more ’typical’ or statistically com-
mon, reflecting a shift from energy-driven order to entropy-driven disorder. These
two distinct phases – the ordered, low-temperature phase and the disordered, high-
temperature phase – are typically delineated by a critical point known as the phase
transition. Around this point, various singularities emerge in the derivatives of
the free energy, which is defined as 𝑓 (𝛽) = − 1

𝛽
ln 𝑍 (𝛽). These singularities are

indicative of drastic changes in the system’s behavior and are a hallmark of phase
transitions in statistical mechanics.

Let us compute the partition function for the one-dimensional Ising model as
defined in Eq. (1.1). We denote the partition function for a system of 𝑁 spins with
fixed spins at both ends as 𝑍𝑁 (𝜎1, 𝜎𝑁 ). Calculating this function is straightforward
for a system with only two spins. Let us set 𝐽 = 1 and then, we have 𝑍2(+, +) =

𝑍2(−,−) = 𝑒𝛽, 𝑍2(+,−) = 𝑍2(−, +) = 𝑒−𝛽, where + and − denotes 𝜎 = 1 and −1,
respectively. Now, consider adding an additional spin at site 𝑖 = 3. The resulting
partition function for three spins can be determined by considering cases where the
second and third spins are either aligned or opposite. This yields the following
equations:

𝑍3(+, +) = 𝑒−𝛽𝑍2(+,−) + 𝑒𝛽𝑍2(+, +),
𝑍3(+,−) = 𝑒𝛽𝑍2(+,−) + 𝑒−𝛽𝑍2(+, +).

The above equations are rewritten using matrix multiplications as(
𝑍3(+, +)
𝑍3(+,−)

)
=

(
𝑒𝛽 𝑒−𝛽

𝑒−𝛽 𝑒𝛽

) (
𝑍2(+, +)
𝑍2(+,−)

)
.
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We can repeat this procedure to obtain the partition function of 𝑁 spin systems as(
𝑍𝑁 (+, +)
𝑍𝑁 (+,−)

)
=

(
𝑒𝛽 𝑒−𝛽

𝑒−𝛽 𝑒𝛽

) (
𝑍𝑁−1(+, +)
𝑍𝑁−1(+,−)

)
,

=

(
𝑒𝛽 𝑒−𝛽

𝑒−𝛽 𝑒𝛽

)𝑁−2 (
𝑍2(+, +)
𝑍2(+,−)

)
,

=

(
1
2
[
(2 cosh 𝛽)𝑁−1 + (2 sinh 𝛽)𝑁−1]

1
2
[
(2 cosh 𝛽)𝑁−1 − (2 sinh 𝛽)𝑁−1] )

, (1.2)

where the remaining two boundary conditions, 𝑍𝑁 (−,−) and 𝑍𝑁 (−, +) are respec-
tively equal to 𝑍𝑁 (+, +) and 𝑍𝑁 (+,−). Thus, the partition function for PBC is

𝑍𝑁 (𝛽) = 𝑍𝑁+1(−,−) + 𝑍𝑁+1(+, +)
= (2 cosh 𝛽)𝑁 + (2 sinh 𝛽)𝑁 (1.3)

This result can be further elucidated by employing the concept of a transfer matrix.

The transfer matrix, denoted as T , is defined by the matrix:

T =

(
𝑒𝛽 𝑒−𝛽

𝑒−𝛽 𝑒𝛽

)
. (1.4)

This matrix effectively transfers the partition function from 𝑍𝑁 to 𝑍𝑁+1, serving as a
tool to calculate the partition function for a larger system based on the known results
of a smaller system. The eigenvalues of the transfer matrix, T , are particularly
significant as they dictate the thermodynamic properties of the system. In fact, it
can be demonstrated that the partition function can be succinctly expressed using T
in the following manner:

𝑍𝑁 (𝛽) = Tr T 𝑁 (1.5)

=

1∑︁
𝑛=0

𝜆𝑁𝑛 , (1.6)

where 𝜆0 = 2 cosh 𝛽 and 𝜆1 = 2 sinh 𝛽 are the eigenvalues of T . This elucidates an
important concept: the partition function is essentially the sum of the 𝑁-th powers
of the eigenvalues of the transfer matrix. This concept is applicable to any spatial
dimension.

Real-space renormalization: Migdal-Kadanoff transformaiton
The two-dimensional Ising model presents a higher level of complexity compared

to its one-dimensional counterpart. To address this, Migdal and Kadanoff developed
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Figure 1.1: The sketch of Migdal-Kadanoff transformation. It aims to analytically
see how the coupling 𝐾 = 𝛽𝐽 changes when the system is coarse-grained by a factor
of two.

a methodology to simplify the problem [1, 2]. Kadanoff’s approach focused on
understanding how the effective coupling constant 𝐾 = 𝛽𝐽 evolves with changes
in scale, rather than attempting to directly calculate the partition function. This is
schematically illustrated in Figure 1.1, where the method involves tracing out the
degrees of freedom at the ⊗ sites while retaining the spins at the ◦ sites. Notably,
the spin at the center of each new square lattice is ignored, enabling exact treatment
of the system. Kadanoff’s key assumption is that during the coarse-graining of the
system, the effective coupling effectively doubles. This doubling occurs as a result
of bundling together two interaction bonds from the original lattice. Moreover,
there are spins situated at the center of the new bonds, denoted as ⊗. These central
spins need to be traced out to determine the new coupling constant. Then, the new
coupling constant 𝐾 ′ is derived as follows:

𝐴 exp[𝐾 ′
𝜎1𝜎3] = Tr𝜎2 exp[2𝐾𝜎1𝜎2 + 2𝐾𝜎2𝜎3]

= 2 cosh(2𝐾 (𝜎1 + 𝜎3))
= 2𝜎1𝜎3 sinh2(2𝐾) + 2 cosh2(2𝐾) (1.7)

Given that 𝜎2 = 1, we can express the left-hand side of the equation as:

exp[𝐾 ′
𝜎1𝜎3] = cosh(𝐾 ′) + 𝜎1𝜎3 sinh(𝐾 ′) (1.8)
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Figure 1.2: The RG flow of the two-dimensional Ising model following Eq. (1.9).

This leads us to the relation between the old and new couplings:

tanh(𝐾 ′) = tanh2(2𝐾) (1.9)

Equation (1.9) is fundamental to understanding how coupling constants transform
under scale transformations in the two-dimensional Ising model. It indicates that
with each coarse-graining of the lattice by two sites, the coupling constants evolve
according to the relation 𝐾 ′

= arctanh(tanh2(2𝐾)). This process of evolution is
depicted in Fig. 1.2.

At the critical point 𝐾𝑐, marked by a black dotted line, there is no evolution of 𝐾
since tanh(𝐾𝑐) = tanh2(2𝐾𝑐) holds true. This point is identified as a fixed-point,
corresponding to the critical temperature. In the high-temperature regime where
𝐾 < 𝐾𝑐, as shown by the red arrows, the effective coupling decreases towards zero
with increasing scale. Since 𝐾 = 0 corresponds to the 𝐽 → 0 or 𝑇 → ∞ limit, this
indicates each spin is decoupled, being a phase of complete disorder. Conversely,
starting from a low-temperature regime where 𝐾 > 𝐾𝑐, 𝐾 increases upon coarse-
graining, as indicated by the blue arrows. This behavior, aligning with the 𝐽 → ∞
or 𝑇 → 0 limits, corresponds to a phase characterized by spontaneous symmetry
breaking.

Figure 1.2 effectively illustrates the concept of renormalization group flow (RG
flow) in the context of the coupling constant 𝐾 in the Ising model. As depicted,
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when the scale increases, the couplings 𝐾 that start from values below the critical
point (𝐾 < 𝐾𝑐) and above it (𝐾 > 𝐾𝑐) appear to “flow" towards 𝐾 = 0 and
𝐾 = ∞, respectively. This dynamic behavior of the coupling constant under scaling
transformations is a fundamental aspect of RG flow.

The points 𝐾 = 0, 𝐾𝑐, and ∞ are identified as fixed-points within this flow. These
points are unique in that they remain invariant under scale transformations as for-
mulated in Eq. (1.9). They can be conceptualized as “the terminal stations” of the
scale transformation process. When reaching these points, the system has effectively
discarded all irrelevant information through an infinite series of scale transforma-
tions. Drawing a parallel to the ’Bliss’ wallpaper analogy, each step we take back
from the image can be likened to each step of scale transformation in physical sys-
tems. As we step back, finite-sized clusters within the wallpaper appear smaller
and smaller. Similarly, in physical systems undergoing scale transformations, the
correlation length, denoted as 𝜉, reduces by half with each coarse-graining step.
This process leads the system towards a “simpler theory”, where 𝜉 = 0, represents
a state devoid of significant correlations at large scales.

A notable exception arises at the point of criticality, where 𝜉 reaches infinity. This
infinite correlation length is a defining feature of continuous phase transitions, mark-
ing a state where correlations extend across all scales. The fixed-point associated
with this criticality is of particular interest, as it embodies the key principles of uni-
versality and scale invariance fundamental to understanding these phase transitions.
Despite the microscopic differences between systems like water and magnets, the
macroscopic behaviors of these systems converge to the same fixed-points. This
convergence to common fixed-points is what gives rise to the universal properties
observed in critical phenomena across different physical systems.

To further understand this concept, consider linearizing Eq. (1.9) near the critical
point 𝐾 = 𝐾𝑐. This linearization yields:

(𝐾′ − 𝐾𝑐) ≈ 1.68(𝐾 − 𝐾𝑐).

This relationship indicates that, after 𝑛-steps of scale transformation, the effective
coupling constant increases exponentially as:

(𝐾′ − 𝐾𝑐) ≈ 1.68𝑛 (𝐾 − 𝐾𝑐).

Extending this to a continuous scale transformation 𝑛, we can describe how the
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deviation 𝛿𝐾 = 𝐾 − 𝐾𝑐 grows with scale:

𝑑 (𝛿𝐾 (𝑛))
𝑑𝑛

≈ ln(1.68)𝛿𝐾 (𝑛). (1.10)

Since the system size scales as 𝐿 = 2𝑛, Eq. (1.10) can be reformulated in terms of
the logarithmic scale 𝑙 = ln(𝐿):

𝑑 (𝛿𝐾 (𝑙))
𝑑𝑙

≈ ln(1.68)
ln(2) 𝛿𝐾 (𝑙),

≈ 0.75 𝛿𝐾 (𝑙). (1.11)

This formulation represents the RG equation. Phase transitions that belong to the
same universality class are characterized by the same RG equation, even though they
may have different specific scale transformations as in Eq. (1.9). The coefficient
∼ 0.75 in this equation is referred to as the RG dimension, which plays a crucial
role in determining the critical exponents of the system. It is noteworthy that while
the exact RG dimension for the Ising universality class is one as

𝑑 (𝛿𝐾 (𝑙))
𝑑𝑙

= 𝛿𝐾 (𝑙). (1.12)

Namely, Kadanoff’s approximation yields a close value, demonstrating the effec-
tiveness of this simplified approach.

In the following sections, we will delve deeper into this concept, interpreting
it through the lens of field theory. This approach will provide a more nuanced
and comprehensive understanding of the dynamics at play in phase transitions and
critical phenomena.

Field theory describing two-dimensional fixed-point
Universality at criticality can be exemplified by examining the behavior of the

correlation function in critical systems. In the specific case of the critical two-
dimensional Ising model, the spin-spin correlation function exhibits a polynomial
decay characterized by:

⟨𝜎(𝑟𝑖)𝜎(𝑟 𝑗 )⟩ ∝
1

|𝑟𝑖 − 𝑟 𝑗 |1/4 , (1.13)

where 𝑟𝑖 and 𝑟 𝑗 denote the positions of spins. This equation illustrates how, at
criticality, the correlation between spins decays in a manner inversely proportional
to the distance raised to the power of 1/4.
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In contrast, for systems that are not at criticality, which possess a finite correlation
length 𝜉, the correlation function typically exhibits an exponential decay:

⟨𝜎(𝑟𝑖)𝜎(𝑟 𝑗 )⟩ ∝ 𝑒−|𝑟𝑖−𝑟 𝑗 |/𝜉 .

In this scenario, the correlation diminishes exponentially with increasing distance
between spins, governed by the correlation length 𝜉.

Therefore, the correlation function in Eq. (1.13) for the critical Ising model can be
understood as the limit where 𝜉 → ∞. This infinite correlation length at criticality
is what leads to the power-law decay of the correlation function, distinguishing
it from the exponential decay observed in systems with finite correlation lengths.
This behavior exemplifies the concept of universality at criticality, where different
systems exhibit similar long-range correlations as they approach their critical points.

In field theory, correlation functions are expressed in terms of operators. For
instance, Eq. (1.13) in the field theory framework is represented as:

⟨𝜎̂(𝑟𝑖)𝜎̂(𝑟 𝑗 )⟩ =
1

|𝑟𝑖 − 𝑟 𝑗 |1/4 , (1.14)

where 𝜎̂ denotes the spin operator and the brackets indicate the expectation value
of inserting two such spin operators into the vacuum state. This formulation reflects
how the correlation between spins decays with distance in the critical Ising model.

Another crucial operator in the critical Ising model is the energy operator, denoted
as 𝜖 . The correlation function for this operator is given by:

⟨𝜖 (𝑟𝑖)𝜖 (𝑟 𝑗 )⟩ =
1

|𝑟𝑖 − 𝑟 𝑗 |2
. (1.15)

This equation demonstrates that the correlation of the energy operator also decays
with distance, but at a different rate compared to the spin operator.

On the lattice, the correlation function corresponding to the energy operator takes
the form:

⟨(𝜎(𝑟𝑖)𝜎(𝑟′𝑖 )) (𝜎(𝑟 𝑗 )𝜎(𝑟′𝑗 ))⟩ ∝
1

|𝑟𝑖 − 𝑟 𝑗 |2
, (1.16)

where 𝑟′
𝑖

is a neighboring site of 𝑟𝑖. The product 𝜎(𝑟𝑖)𝜎(𝑟′𝑖 ) represents the local
energy in the Ising model, which explains why 𝜖 is referred to as the energy operator.
In addition to the above operators, there is also the identity operator denoted as 𝐼
that represents “inserting nothing."
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The exact values of the exponents in Eqs. (1.14) and (1.15), specifically 1/4
and 2, naturally lead to speculation about an underlying theoretical framework that
explains these precise figures. Indeed, for two-dimensional critical systems, there is
a profound theoretical basis behind these exponents. The concept of scale invariance,
which is inherent to fixed points, extends to a broader principle known as conformal
invariance in two dimensions. Conformal invariance imposes strict constraints on
operators and their correlation functions, often enabling the precise determination
of critical exponents.

The field theory that incorporates this invariance is known as conformal field theory
(CFT). The key to CFT’s effectiveness lies in its exploitation of conformal invariance,
which significantly enhances the symmetry of the system and, consequently, its
analytical traceability.

In CFT, each universality class corresponds to a specific CFT. For example, the
Ising universality class is described by the Ising CFT, which includes three primary
operators 3: 𝐼, 𝜎, and 𝜖 (hereafter, we will refer to operators without the hat
notation). More generally, primary operators in CFT are denoted as Φ𝑖. These
operators exhibit the following characteristics: The two-point correlation function
is defined as

⟨Φ𝑖 (𝑟𝑖)Φ 𝑗 (𝑟 𝑗 )⟩ =
𝛿𝑖, 𝑗

|𝑟𝑖 − 𝑟 𝑗 |2𝑥𝑖
, (1.17)

where 𝑥𝑖 represents the scaling dimension of the operator Φ𝑖. In the case of the
Ising CFT, the scaling dimensions are 𝑥𝐼 = 0, 𝑥𝜎 = 1/8, and 𝑥𝜖 = 1. Similarly, the
three-point correlation function is expressed in a universal form:

⟨Φ𝑖 (𝑟𝑖)Φ 𝑗 (𝑟 𝑗 )Φ𝑘 (𝑟𝑘 )⟩ =
𝐶𝑖 𝑗 𝑘

|𝑟𝑖 − 𝑟 𝑗 |Δ
𝑘
𝑖 𝑗 |𝑟 𝑗 − 𝑟𝑘 |Δ

𝑖
𝑗𝑘 |𝑟𝑘 − 𝑟𝑖 |Δ

𝑗

𝑘𝑖

, (1.18)

where𝐶𝑖 𝑗 𝑘 is an operator product expansion(OPE) coefficient, and Δ𝑘
𝑖 𝑗
= 𝑥𝑖 +𝑥 𝑗 −𝑥𝑘 .

Notable OPE coefficients for the Ising CFT include:

𝐶𝐼 𝐼 𝐼 = 𝐶𝐼𝜎𝜎 = 𝐶𝐼𝜖𝜖 = 1, (1.19)

𝐶𝜎𝜎𝜖 =
1
2
. (1.20)

3Primary operators are a specific class of operators that play an important role in elementary
excitations. While we will only discuss this class of operators in this section, there is another class
named descendants that govern higher excited states.
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It is important to note that the permutation of indices in these coefficients does not
alter their values, preserving the Z2 symmetry 4.

Emphasizing the physical significance of OPE coefficients in RG theory is crucial,
as these coefficients play a pivotal role in understanding how local operators interact
and combine, or “fuse," within the field theory framework. To grasp this concept,
consider an analogy involving a canvas with blue and red dots placed close to each
other. When viewed from a close distance, these dots are seen as distinct entities.
However, as one steps back, the dots may appear to merge into a single purple dot.
This phenomenon of blending or “fusion" of the dots mirrors how operators in field
theory can be combined.

In field theory, the fusion of operators is mathematically represented by the mixing
of two local operators situated in close proximity. Let Φ𝑖 and Φ 𝑗 be two such
operators. The fusion of these operators can be expanded in terms of the local
operator basis, as illustrated below:

Φ𝑖 (𝑟𝑖)Φ 𝑗 (𝑟 𝑗 ) ≈
∑︁
𝑘

𝐶𝑖 𝑗 𝑘

|𝑟𝑖 − 𝑟 𝑗 |𝑥𝑖+𝑥 𝑗−𝑥𝑘
Φ𝑘

(𝑟𝑖 + 𝑟 𝑗
2

)
. (1.21)

In this equation, the exponents with respect to |𝑟𝑖 − 𝑟 𝑗 | are chosen to ensure con-
sistency with the two-point correlation function, as described in Eq. (1.17). This
expansion signifies how two local operators when in close proximity, can effectively
combine to form a different operator, Φ𝑘 , with the OPE coefficients 𝐶𝑖 𝑗 𝑘 dictating
the nature and strength of this fusion.

In the Ising CFT, the fusion of two spin operators 𝜎 results in the formation
of the energy operator 𝜖 . This concept aligns intuitively with the corresponding
lattice model of the Ising system. Recall that in the lattice model, the individual
spin operator 𝜎𝑖 and the product of adjacent spin operators 𝜎𝑖𝜎𝑖+1 correspond to
the CFT operators 𝜎 and 𝜖 , respectively. Consequently, when two spin operators
positioned close to each other on the lattice are multiplied, the resulting interaction
closely resembles 𝜎𝑖𝜎𝑖+1, which is the lattice analog of the energy operator 𝜖 . This
interaction is mirrored in the CFT framework, as evidenced by the non-zero OPE
coefficient 𝐶𝜎𝜎𝜖 , indicating a significant fusion between two 𝜎 operators into 𝜖 .

Additionally, in CFT, the identity operator 𝐼 represents the concept of inserting
no operator into the system. As such, fusing any operator with 𝐼 does not result in

4For a detailed discussion on CFT, readers are referred to Ref. [3]. In this chapter, we aim to
give a practical introduction to CFT.
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Figure 1.3: A schematic figure of fusing of operators.

any change to the original operator. This is reflected in the OPE coefficients, where
fusing an operator with the identity operator maintains the operator unchanged,
leading to 𝐶𝑖𝑖𝐼 = 1. This property highlights the foundational role of the identity
operator in maintaining the integrity of the system’s operators during the fusion
process.

Building upon our understanding of OPE coefficients and their role in operator
fusion, we can discern the rationale behind their appearance in the three-point
correlation function, as shown in Eq. (1.18). Consider the situation where the points
𝑟𝑖 and 𝑟 𝑗 are in close proximity to each other. Under this condition, Eq. (1.18) can
be approximated as:

⟨Φ𝑖 (𝑟𝑖)Φ 𝑗 (𝑟 𝑗 )Φ𝑙 (𝑟𝑙)⟩ ≈
𝐶𝑖 𝑗 𝑙

|𝑟𝑖 − 𝑟 𝑗 |𝑥𝑖+𝑥 𝑗−𝑥𝑙
1

|𝑟𝑖 − 𝑟𝑙 |2𝑥𝑙
. (1.22)

This approximation effectively combines the principles outlined in Eqs. (1.17) and
(1.18). Specifically, it demonstrates that a three-point correlation function can be
interpreted as a two-point function following the fusion of the first two operators,
Φ𝑖 and Φ 𝑗 .

This fusion process results in a single operator, which then interacts with the
third operator, Φ𝑙 . The corresponding correlation function thus encapsulates this
interaction, with the OPE coefficient 𝐶𝑖 𝑗 𝑘 playing a crucial role in quantifying the
strength and nature of the fusion between Φ𝑖 and Φ 𝑗 . This concept is graphically
represented in Fig. 1.3, where the fusion of the first two operators before interacting
with the third is illustrated. Through this lens, the three-point function can be
understood as a manifestation of the underlying fusion dynamics among the operators
in the field theory framework.

In CFT, conformal mapping plays a crucial role, especially in two-dimensional
contexts. In such systems, the physical 𝑥-𝑦 plane is effectively represented using a
complex plane with coordinates 𝑧 = 𝑥 + 𝑖𝑦 and its complex conjugate 𝑧 = 𝑥 − 𝑖𝑦. In
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this framework, primary operators transform when we perform a conformal mapping
𝑤 = 𝑓 (𝑧) as:

Φ̃𝑖 (𝑤, 𝑤̄) =
(
𝜕𝑤

𝜕𝑧

)−ℎ𝑖 (𝜕𝑤̄
𝜕𝑧

)−ℎ̄𝑖
Φ𝑖 (𝑧, 𝑧), (1.23)

In this formula, ℎ𝑖 and ℎ̄𝑖 are known as the conformal weights of the operator
Φ𝑖, determining its scaling dimension 𝑥𝑖 = ℎ𝑖 + ℎ̄𝑖 and conformal spin 𝑠𝑖 = ℎ𝑖 − ℎ̄𝑖.
Consider a scale transformation described by𝑤 = 𝑏−1𝑧 5. Under this transformation,
the primary operator Φ𝑖 behaves as:

Φ̃𝑖 (𝑤, 𝑤̄) = 𝑏𝑥𝑖Φ𝑖 (𝑧, 𝑧). (1.24)

This relationship illustrates how the operator scales with the transformation factor
𝑏. Setting 𝑏 = |𝑧 |, we can derive the power-law decay of the two-point correlation
function, as observed in Eq. (1.17):

⟨Φ𝑖 (𝑧, 𝑧)Φ𝑖 (0)⟩ = |𝑧 |−2𝑥𝑖 ⟨Φ𝑖 (1)Φ𝑖 (0)⟩. (1.25)

This outcome highlights how the decay rate of the two-point function is directly
linked to the scaling dimension of the operator, demonstrating the profound influence
of conformal mapping in CFT. Such insights are pivotal for understanding correlation
functions in critical phenomena and the symmetry principles that underpin them.

The collection of scaling dimensions 𝑥𝑖 and OPE coefficients 𝐶𝑖 𝑗 𝑘 , collectively
referred to as CFT data, is crucial for a comprehensive understanding of critical
phenomena. Therefore, the determination of this CFT data, particularly from a
numerical perspective, is a fundamental objective in the study of critical systems.

Renormalization group and CFT
The concept of CFT is intrinsically linked to the RG theory. Specifically, CFT

provides a framework to calculate how deviations from critical values, such as 𝛿𝐾 (𝑙)
in Eq. (1.12), evolve through scale transformations. When considering Kadanoff’s
real-space RG approach, one might question why the analysis is focused solely on the
coupling constant 𝐾 . In an exact coarse-graining of the model, other coupling con-
stants, like the next nearest-neighbor coupling, could emerge. However, Eq. (1.11)

5𝑏 is the factor of scale transformation, where Kadanoff’s RG corresponds to 𝑏 = 2. This is
because 2𝑐𝑚 in 𝑧-plane becomes 1𝑐𝑚 in 𝑤-coordinate.
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still qualitatively represents the correct RG flow for Ising criticality. So, why is it
valid to concentrate only on 𝐾? Field theory answers this by identifying 𝐾 as a
relevant parameter, whereas others are not. To understand this in detail, Wilson first
introduced the concept of considering all possible perturbations that might arise
from the microscopic details of the Hamiltonian [4, 5]. Deviations such as 𝛿𝐾 from
the scale-invariant action 𝑆∗ are expressed by 𝑔 𝑗 with corresponding operators Φ 𝑗 .
Hence, the action can be formulated as:

𝑆 = 𝑆∗ +
∫

𝑑𝑑𝑟
∑︁
𝑗

𝑔 𝑗Φ 𝑗 , (1.26)

where Φ 𝑗 are normalized operators, and the sum of 𝑗 goes through all possible
perturbations. We are interested in how only a few of these become relevant during
the scale transformation. To do this, we expand the Euclidean action around the
fixed point as follows:

Tr𝑒−𝑆 = Tr𝑒−𝑆
∗

〈
1 −

∑︁
𝑖

∫
𝑑𝑑𝑟𝑔𝑖Φ𝑖 +

1
2

∑︁
𝑖, 𝑗

∫
𝑑𝑑𝑟𝑖𝑑

𝑑𝑟 𝑗𝑔𝑖𝑔 𝑗Φ𝑖Φ 𝑗 + · · ·
〉
𝑆∗

Under scale transformations 𝑟 → 𝑏𝑟 , the second and third terms transform as:∑︁
𝑖

∫
𝑑𝑑𝑟𝑔𝑖Φ𝑖 →

∑︁
𝑖

∫
𝑑𝑑𝑟𝑏𝑑−𝑥𝑖𝑔𝑖Φ𝑖,

1
2

∑︁
𝑖, 𝑗

∫
𝑑𝑑𝑟𝑖𝑑

𝑑𝑟 𝑗𝑔𝑖𝑔 𝑗Φ𝑖Φ 𝑗 →
𝑆𝑑

2
(𝑏 − 1)

∑︁
𝑖, 𝑗

∫
𝑑𝑑𝑟𝑖𝑔𝑖𝑔 𝑗𝐶𝑖 𝑗 𝑘Φ𝑘 ,

where 𝑆𝑑 is the surface area of a (𝑑 − 1)-dimensional sphere, with 𝑆2 = 2𝜋 in
two dimensions. In the analysis of the third term, we integrate over the region
𝑎 < |𝑟𝑖 − 𝑟 𝑗 | < 𝑏𝑎, thereby accounting for the short-range physics. Here, 𝑎
represents the lattice spacing at the current scale. We define 𝑔𝑘 such that 𝑎 is
normalized to unity. Upon applying an infinitesimal scale transformation 𝑏 ≈ 1, the
effective coupling 𝑔𝑘 evolves to 𝑔𝑘 (𝑏), given by

𝑔𝑘 (𝑏) = 𝑏𝑑−𝑥𝑘𝑔𝑘 −
𝑆𝑑

2
(𝑏 − 1)

∑︁
𝑖, 𝑗

𝐶𝑖 𝑗 𝑘𝑔𝑖𝑔 𝑗 ,

Consequently, the RG equation up to 1-loop expansion becomes:

𝑑𝑔𝑘

𝑑𝑙
= 𝑏

𝑑𝑔𝑘

𝑑𝑏

= (𝑑 − 𝑥𝑘 )𝑔𝑘 −
𝑆𝑑

2

∑︁
𝑖, 𝑗

𝐶𝑖 𝑗 𝑘𝑔𝑖𝑔 𝑗 , (1.27)
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To this order, the RG equation (beta function) is universally determined by the
scaling dimension 𝑥𝑘 and the OPE coefficients 𝐶𝑖 𝑗 𝑘 .

Revisiting the justification for concentrating solely on 𝛿𝐾 in Eq. (1.12), it is
essential to understand the dynamics of operators near criticality, as defined by the
fixed-point CFT. The Ising CFT, although potentially allowing for infinite kinds of
perturbations, has a specific criterion for which perturbations are significant during
scale transformations. According to Eq. (1.27), the running coupling constants scale
as

𝑔𝑘 (𝐿) ∝ 𝐿𝑑−𝑥𝑘 ,

and thereby only operators with scaling dimensions 𝑥𝑘 < 𝑑 remain influential
through these transformations. Such operators are termed “relevant operators.”

The rationale behind focusing on a limited number of parameters in RG analysis is
rooted in the fact that typically, only a few relevant operators exist in the fixed-point
CFT. In the case of the Ising CFT, for instance, the operator 𝜖 is the primary relevant
operator that persists 6, which corroborates the validity of Kadanoff’s approach. This
focus on a few relevant parameters simplifies the RG analysis while still capturing
the critical behavior of the system.

Conversely, operators with scaling dimensions 𝑥𝑘 > 𝑑, known as “irrelevant op-
erators," tend to diminish and become negligible throughout scale transformations.
These operators do not significantly influence the macroscopic properties of the
system and therefore do not need to be considered in the RG analysis. This selective
approach, focusing only on relevant operators like 𝜖 in the Ising CFT, is what makes
critical phenomena universal across diverse systems.

To summarize this section, the universality observed in critical phenomena can be
traced back to the shared RG fixed points among different systems. These RG fixed
points, conceptualized as ’terminal stations’ in the scale transformation process, are
characterized by a limited set of parameters corresponding to relevant operators. In
contrast, other microscopic details, which are associated with irrelevant operators,
diminish and lose significance through the coarse-graining process.

This paradigm highlights the fundamental principle that, at the macroscopic level,
the critical behavior of a system is governed not by the myriad of its microscopic
details, but by a select few relevant parameters. These parameters, represented

6𝜖 and 𝜎 respectively corresponds to the shift of temperature and applying a uniform magnetic
field. Under the Z2 spin flip symmetry, only 𝜖 is allowed.
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by the relevant operators at the RG fixed point, dictate the universal aspects of the
system’s critical behavior. As a result, systems with different microscopic structures
can exhibit the same macroscopic critical phenomena, provided they converge to the
same RG fixed point. This convergence is what underlies the universality of critical
phenomena, emphasizing the profound impact of scale and relevant operators in
determining the nature of phase transitions and critical behavior.

Moving to the next section, our focus shifts to the methodologies for extracting uni-
versal information from critical lattice models. A particularly promising approach
is the tensor network formalism. This method can be seen as a generalization of
the transfer matrix formalism, which we previously discussed in the context of the
one-dimensional Ising model. When combined with recent advances in computa-
tional techniques, tensor network formalism enables a more sophisticated form of
real-space RG analysis.

This enhanced RG approach transcends Kadanoff’s methodology by its ability
to retain multiple parameters throughout the scale transformation process. This
characteristic aligns more closely with Wilson’s original vision for RG theory,
providing a more comprehensive and faithful representation of scale transformations
in physical systems.

In the upcoming section, we will review the fundamental concepts underlying
tensor network-based RG. This will set the stage for the main chapter, where we
propose a novel approach to calculate the RG flow using tensor networks. This
approach not only leverages the strengths of tensor network formalism but also
addresses some of the limitations of previous methodologies, offering a more robust
and accurate tool for analyzing critical behavior in lattice models.

1.2 Review on tensor network renormalization
What is a tensor?

Before delving into the intricacies of our study, it is essential to establish a fun-
damental understanding of what a tensor is. A tensor can be seen as a generalized
form of vectors and matrices. To illustrate, consider the following examples, which
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are referred to as one-leg and two-leg tensors, respectively:

𝑉 =
©­­«
1
2
3

ª®®¬ ,
𝑀 =

(
𝑎00 𝑎01

𝑎10 𝑎11.

)
For clarity in this thesis, these tensors are denoted as 𝑉𝑖 and 𝑀𝑖 𝑗 , indicating their
respective number of legs. The indices run as 𝑖 = 0, 1, 2 for 𝑉𝑖 and (𝑖, 𝑗) = (0, 0),
(0, 1), (1, 0), and (1, 1) for 𝑀𝑖 𝑗 . This notation allows us to interpret the values as
𝑉𝑖 = 𝑖 + 1 and 𝑀𝑖 𝑗 = 𝑎𝑖 𝑗 . The dimension associated with each index is known as the
bond dimension 𝐷. Accordingly, we denote 𝐷 = 3 for 𝑉𝑖 and 𝐷 = 2 for 𝑀𝑖 𝑗 .

Another example is the anti-symmetric tensor 𝜖𝑖 𝑗 𝑘 , defined as:

𝜖𝑖 𝑗 𝑘 =


1 for (𝑖, 𝑗 , 𝑘) = (0, 1, 2), (1, 2, 0), (2, 0, 1),

−1 for (𝑖, 𝑗 , 𝑘) = (2, 1, 0), (1, 0, 2), (0, 2, 1),

0 otherwise.

This tensor represents a 3-leg tensor with a bond dimension of 𝐷 = 3. The concept
of tensors, as previously introduced, extends to structures with any number of legs,
known as 𝑛-leg tensors. These multi-dimensional tensors play a pivotal role in
the discussions that follow in this thesis. To aid in the comprehension of tensors,
especially in more complex scenarios, we often employ a graphical representation.
In this visual depiction, tensors are illustrated as circles with a corresponding number
of legs emanating from them.

For instance, the tensors 𝑉 , 𝑀 , and 𝜖 , previously defined, would be represented
graphically as follows:

.

Similarly, the multiplication of tensors is represented as a contraction of legs.

.

These graphical representations provide an intuitive way to visualize the connec-
tions between tensors, particularly when dealing with complex tensor networks or
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operations involving multiple tensors. By utilizing these diagrams, we can more
easily conceptualize the multi-dimensional relationships and transformations that
tensors undergo in our analyses.

Tensor network renormalization
The tensor network is a numerical technique used to represent the partition function

of statistical models. The partition functions of two-dimensional statistical models
with a system size of 𝐿 can be expressed through the contraction of 𝐿2 tensors 7.
Each tensor represents a local Boltzmann weight, and its dimensions correspond
to physical degrees of freedom. For instance, the local tensor of the Ising model
on the square lattice is a 𝐷 = 2 four-leg tensor 𝑇 (1)

𝑖 𝑗 𝑘𝑙
= 𝑒𝛽(𝑠𝑖𝑠 𝑗+𝑠 𝑗 𝑠𝑘+𝑠𝑘 𝑠𝑙+𝑠𝑙𝑠𝑖) , where

𝑠𝛼 = 2𝛼 − 1. The tensor network representation often provides an efficient method
for simulating complex systems.
However, the exact contraction of 𝐿2 tensors is generally impracticable for larger
system sizes due to the constraints imposed by the high-dimensional Hilbert space 8.
TNR aims to circumvent this issue by utilizing the principles of renormalization
group theory. During each step of the RG process, 𝑇 (𝑛) is coarse-grained to 𝑇 (𝑛+1)

via a series of decompositions and recombinations, as illustrated in Fig. 1.4. Starting
from the local tensor 𝑇 (1) , we can simulate a system size of 𝐿 =

√
2
𝑛

after 𝑛 RG
steps. The coarse-graining process in TNR involves numerical truncation, reducing
the number of degrees of freedom while preserving essential physics. Consequently,
TNR facilitates efficient numerical simulation of complex systems.

Tensor Renormalization Group
Levin and Nave were the pioneers in applying the technique of singular value

decomposition (SVD) to the decomposition of tensor networks [6]. SVD offers
a straightforward yet effective method for the tensor decomposition of a four-leg
tensor 𝑇𝑖 𝑗 𝑘𝑙 .

7Tensors can be understood as a generalization of vectors and matrices, extending into higher
dimensions and complexities. A tensor characterized by 𝑛 indices is referred to as an 𝑛-leg tensor.
In this framework, vectors, and matrices are special cases of tensors: a vector is a 1-leg tensor,
possessing a single index, while a matrix is a 2-leg tensor, defined by two indices.

8The one-dimensional Ising model was the simplest case, where we could perform exact con-
tractions
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Figure 1.4: A schematic picture of the tensor network renormalization. The effective
local Boltzmann weight at 𝑛-th RG step 𝑇 (𝑛) is decomposed into the two three-leg
tensors and recombined as 𝑇 (𝑛+1) . The effective system size enlarges by

√
2 each

RG step.

The decomposition of 𝑇𝑖 𝑗 𝑘𝑙 using SVD can be represented as follows:

𝑇𝑖 𝑗 𝑘𝑙 =

𝑑2∑︁
𝑚,𝑛=1

𝑈𝑖 𝑗𝑚Σ𝑚𝑛𝑉
†
𝑛𝑘𝑙
, (1.28)

where 𝑈𝑖 𝑗𝑚 and 𝑉𝑛𝑘𝑙 are unitary matrices, and Σ𝑚𝑛 = 𝛿𝑚,𝑛𝑠𝑚 is a diagonal matrix.
The diagonal elements of Σ are the singular values that is non-negative real numbers,
and SVD effectively generalizes the concept of matrix diagonalization to rectangular
matrices. In the context of tensor networks, when the bond dimension of 𝑇𝑖 𝑗 𝑘𝑙 is
𝑑, the summation in Eq. (1.28) runs over 𝑑2 terms. This new index 𝑚 represents a
new bond dimension, which necessitates a truncation process to prevent the bond
dimension from becoming excessively large during successive coarse-graining steps.
Truncation is thus a crucial aspect of maintaining computational efficiency and
feasibility in TRG.
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Now, we want to truncate the index 𝑚 to minimize the Hilbert-Schmidt norm of
the difference between the original and truncated tensors as follows:

(1.29)

We truncate the singular values when 𝑑2 is larger than the desired bond dimension
𝐷. Let Σ𝐷𝑚𝑛 be the truncated matrix that keeps only 𝐷 leading singular values. Then,
Eq. (1.29) is

(1.30)

= Tr
[
𝑈†𝑈 (Σ2 + (Σ𝐷)2 − 2ΣΣ𝐷)𝑉†𝑉

]
=

𝑑2∑︁
𝑚=1

𝑠2
𝑚 +

𝐷∑︁
𝑚=1

𝑠2
𝑚 − 2

𝐷∑︁
𝑚=1

𝑠2
𝑚

=

𝑑2∑︁
𝑚=𝐷+1

𝑠2
𝑚 (1.31)

In statistical mechanics systems, the singular values 𝑠𝑚 typically exhibit an expo-
nential decay as a function of 𝑚. This characteristic decay pattern implies that,
as 𝑚 increases, the singular values become progressively smaller. Consequently,
when evaluating the sum in Eq. (1.31), this exponential decay of 𝑠𝑚 ensures that
the cumulative sum remains extremely small, particularly when a sufficiently large
bond dimension 𝐷 is considered. Therefore, for practical computations, a large 𝐷
effectively captures the significant contributions of the sum, while the contributions
from higher values of 𝑚 become negligibly small due to this exponential decay.
Figure 1.5 presents a typical example of singular value distributions in TRG for
the two-dimensional classical Ising model. The blue and green lines represent the
singular values 𝑠𝑚 for the low and high-temperature phases, respectively. In this
case, the bond dimension is set to ten, resulting in a total of one hundred singular
values. However, it is observed that for 𝑚 > 10, the values of 𝑠𝑚 drop below 10−6,
affirming the efficacy and validity of this truncation method in these phases.

Conversely, the critical phase, depicted by the orange line, exhibits a slower decay
in 𝑠𝑚. At the same bond dimension of 𝐷 = 10, the singular values are still around
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Figure 1.5: An example of singular values of the four-leg tensor 𝑇𝑖 𝑗 𝑘𝑙 . The blue,
orange, and green lines show the decay of 𝑠𝑚 for the classical Ising model at the
low, critical, and high-temperature regimes, respectively at 𝑑 = 𝐷 = 10 after six RG
steps.

10−2, highlighting a marked difference from the non-critical phases. This slower
decay at criticality underscores a crucial challenge in TRG calculations: the difficulty
in effectively capturing critical phenomena. Truncation of tensors at criticality can
lead to systems with finite correlations, potentially introducing significant errors.

Given the importance of accurately estimating errors, especially in the context of
critical systems, we will delve into a more detailed discussion on this topic in a
later section. This analysis is crucial for both understanding the limitations of TRG
at criticality and for developing strategies to mitigate error propagation in practical
calculations.

Given the validity of the SVD truncations in statistical mechanics, Levin and Nave
proposed the following algorithm:
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Algorithm 1 Algorithm for TRG
Input: Initial tensor 𝑇 (0) representing local Boltzmann weights
Output: Renormalized tensor 𝑇 (𝑛)

TRG 1-step: First, decompose the four-leg tensor 𝑇 with bond dimension 𝑑 as
follows:

𝑇𝑖 𝑗 𝑘𝑙 =

𝑑2∑︁
𝑚=1

𝑈𝑖 𝑗𝑚Σ𝑚𝑛𝑉
†
𝑛𝑘𝑙
,

𝑆1
𝑖 𝑗𝑛 =

𝑚𝑖𝑛(𝑑2,𝐷)∑︁
𝑚=1

𝑈𝑖 𝑗𝑚
√︁
Σ𝑚𝑛

𝑆2
𝑛𝑘𝑙 =

𝑚𝑖𝑛(𝑑2,𝐷)∑︁
𝑚=1

√︁
Σ𝑚𝑛𝑉

†
𝑛𝑘𝑙√︁

Σ𝑚𝑛 = 𝛿𝑚,𝑛
√
𝑠𝑚

Repeat the same procedure to make 𝑆3 and 𝑆4 by doing SVD with a pair of indices
{ 𝑗 𝑘} and {𝑙𝑖}. Then, contract 𝑆1 ∼ 𝑆4 inside the red dotted square and rotate by
45 degrees as below:

for 𝑖 = 1 to 𝑛 do
Repeat TRG 1-step

end for
return 𝑇 (𝑛)

The practical implementation in Python is presented in my GitHub repository
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Figure 1.6: The CDL tensors after TRG. The local loop, marked by a red square,
persists after the TRG steps, indicating that ultraviolet information remains even
after extensive coarse-graining.

(https://github.com/dartsushi/Loop-TNR_RGflow/tree/main/TRG_tutorial).
Applications to a honeycomb lattice are also discussed in the original paper [6].

Limitation of TRG
Despite the successes of TRG in various applications, it is not without its limita-

tions. A significant shortcoming of TRG, as noted in references [6, 7], is its inability
to accurately reproduce the fixed-points of disorder phases. Levin attributed this
limitation to the inherent nature of SVD-based TRG, which tends to produce un-
physical fixed-point tensors, referred to as corner double line (CDL) tensors. The
structure of CDL tensors is illustrated as follows:

(1.32)
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In SVD-type TRG, there is a notable challenge in eliminating local entanglement,
as depicted by the red square in Fig. 1.6. This figure demonstrates that ultraviolet
information persists throughout successive coarse-graining steps. Consequently,
these degrees of freedom consume valuable bond dimensions, leading to suboptimal
approximations after multiple RG steps.

This inherent limitation of TRG underscores the need for more sophisticated
coarse-graining algorithms that transcend the local tensor approximation presented
in Eq. (1.29). Such advanced algorithms are encompassed under the umbrella of
TNR, which aims to address these specific challenges and improve the accuracy of
coarse-graining in complex systems.

Tensor network renormalization
The field has witnessed the development of numerous algorithms aimed at over-

coming the CDL problem, a known limitation in TRG applications [8–13]. While
these algorithms vary in their technical details, they generally embrace two core
principles: employing a larger unit-cell for optimization processes and effectively
filtering out local entanglement. Let us focus on Loop-TNR [10], known to be one
of the best ones for two-dimensional TNR.

Optimization with a larger unit-cell

Loop-TNR aims to perform the approximation of the following:

. (1.33)

Contrasting with the approach described in Eq. (1.29), TNR focuses on a two-by-two
unit cell composed of two distinct tensors. In this process, an 8-leg tensor (as shown
on the left side) is approximated through the contraction of eight 3-leg tensors,
denoted as 𝑆1 ∼ 𝑆8(as depicted on the right side).

This methodology is central to the concept of TNR: rather than optimizing individ-
ual tensors, the focus is on optimizing contracted tensor networks. This approach
allows for a more nuanced and effective handling of complex tensor structures,
particularly in addressing the limitations of traditional SVD methods in TRG. By
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optimizing the entire network of tensors, TNR provides a more robust framework
for accurately capturing the intricate interactions within these systems.

In TRG, 𝑆1 ∼ 𝑆8 are constructed through SVD as explained in the algorithm. As
those tensors from SVD are a good enough approximation of local tensors, we adopt
them as initial tensors of optimizations. Let the left and right sides of Eq. (1.33) be
|Ψ𝐴⟩ and |Ψ𝐵⟩. Then, the cost function is rewritten in the following forms.

| |Ψ𝐴⟩ − |Ψ𝐵⟩|2 = ⟨Ψ𝐴 |Ψ𝐴⟩ + ⟨Ψ𝐵 |Ψ𝐵⟩ − ⟨Ψ𝐴 |Ψ𝐵⟩ − ⟨Ψ𝐵 |Ψ𝐴⟩, (1.34)

. (1.35)

Now, we want to optimize 𝑆1 ∼ 𝑆8 to minimize the cost function. For convenience,
we define 𝐶, 𝑁𝑖,𝑊𝑖, and𝑊†

𝑖
as followings:

.

This allows to rewrite Eq. (1.35) as

𝑓 ({𝑆𝑖}) = | |Ψ𝐴⟩ − |Ψ𝐵⟩|2

= 𝐶 + (𝑆𝑖)†𝑁𝑖𝑆𝑖 −𝑊†
𝑖
𝑆𝑖 − (𝑆𝑖)†𝑊𝑖 . (1.36)

This function is quadratic if we fix every tensor except for 𝑆𝑖. In this case, the
minimum can be found by solving 𝛿 𝑓 ({𝑆𝑖})

𝛿𝑆𝑖
= 0. It is straightforward to check that it

is equivalent to solving the following linear equation:

𝑁𝑖𝑆𝑖 = 𝑊𝑖 . (1.37)

Entanglement filtering
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Another important ingredient of TNR is entanglement filtering. This is a procedure
to discard the local degrees of freedom under the existence of CDL tensors. When
the tensor has the form of the CDL tensors shown in Eq. (1.32), the contracted four
tensors can be expressed as the following:

,

where (𝑇1, 𝑇2, 𝑇3, 𝑇4) = (𝑇𝐴, 𝑇𝐵, 𝑇𝐴, 𝑇𝐵), and the red loop corresponds to the local
loop in Fig. 1.6. In scenarios where the red loop encompasses 𝑛 dimensions, each
tensor within this red loop is associated with a rank-𝑛 diagonal matrix, as illustrated
in the following diagram:

. (1.38)

Here, each 𝜆𝑖 is arranged in descending order based on absolute values. The primary
objective in entanglement filtering is to effectively compress this matrix to a rank-1
configuration. This compression is achieved by constructing a projector between 𝑇𝑖
and 𝑇𝑖+1 that targets the subspace corresponding to 𝜆1, the largest singular value. To
do this, we use a QR decomposition. Consider the procedure of inserting a projector
between tensors 𝑇4 and 𝑇1 in a TNR setup, where we denote 𝑇𝑖+4 = 𝑇𝑖 for cyclic
consistency. The first step involves placing a rank-𝑑 identity matrix, denoted as 𝐿 [1]

1
, to the left of 𝑇1. Subsequently, we apply QR decomposition to the tensor product
of 𝐿 [1]

1 and 𝑇1, resulting in:

𝐿
[1]
1 𝑇1 = 𝑇1𝐿

[2]
1 , (1.39)

where𝑇1 is an orthogonal matrix and 𝐿 [2]
1 is an upper triangular matrix. The next step

involves normalizing 𝐿 [2]
1 appropriately and repeating a similar QR decomposition

process with 𝐿
[2]
1 and 𝑇2, and then proceeding with 𝐿

[3]
1 and 𝑇3. This iterative

process is continued until convergence is achieved, resulting in the final projector
𝐿
[∞]
1 (The convergence is checked when 𝐿1 comes back to between 𝑇4 and 𝑇1.

During this process, 𝐿 accumulates the matrix in Eq. (1.38) to end up having

lim
𝑚→∞

©­­­­­«
𝜆𝑚1 0 · · · 0
0 𝜆𝑚2 · · · · · ·
· · · · · · · · · 0
0 · · · 0 𝜆𝑚𝑛

ª®®®®®¬
∝

©­­­­­«
1 0 · · · 0
0 0 · · · · · ·
· · · · · · · · · 0
0 · · · 0 0

ª®®®®®¬
.
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We repeat the same thing to the left starting from 𝑅
[1]
4 and𝑇4 to obtain 𝑅 [∞]

4 . Finally,
we obtain the projectors using SVD as follows:

𝐿
[∞]
1 𝑅

[∞]
4 = 𝑈41Λ41𝑉

†
41,

𝑃4𝑅 = 𝑅∞
4 𝑉41

1
√
Λ41

, (1.40)

𝑃1𝐿 =
1

√
Λ41

𝑈
†
41𝐿

∞
1 , (1.41)

Obtaining all projectors in hand, we redefine 𝑇𝐴/𝐵 by contracting four projectors
around as below:

.

For more details, readers shall consult the original paper [10]. However, it is impor-
tant to note that we can reduce the CDL loop structure through this procedure. Loop-
TNR’s algorithm is summarized in Algorithm. 2. The practical implementation
in Python is in my GitHub repository(https://github.com/dartsushi/Loop-
TNR_RGflow).
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Algorithm 2 Algorithm for Loop-TNR
Input: Initial tensor 𝑇 (0)

𝐴/𝐵 representing local Boltzmann weights
Output: Renormalized tensor 𝑇 (𝑛)

𝐴/𝐵
Loop-TNR 1-step:
1. Entanglement filtering
2. Decomposition of 𝑇𝐴/𝐵 into 𝑆1 ∼ 𝑆8 using SVD.

3. Optimize 𝑆𝑖 using from 1 to 8.

𝑁𝑖𝑇𝑖 = 𝑊𝑖 . (1.42)

4. Repeat 3 until you reach the desired accuracy.
5. Combine (𝑆1, 𝑆4, 𝑆5, 𝑆8) and (𝑆2, 𝑆3, 𝑆6, 𝑆7) to make new 𝑇𝐴/𝐵 respectively.
for 𝑖 = 1 to 𝑛 do

Repeat Loop-TNR 1-step
end for
return 𝑇

(𝑛)
𝐴/𝐵

Limitation of TNR
While TNR effectively removes CDL tensors, another significant limitation arises
from computational constraints, often termed finite bond dimension effects. For
example, the computational cost of Loop-TNR scales as 𝑂 (𝐷6), limiting practical
computations on a typical desktop computer to bond dimensions up to approximately
𝐷 ≈ 40. Although TNR achieves exactness in the limit of 𝐷 = ∞, the necessity
of using a finite bond dimension inevitably introduces numerical errors. Prior to
our research, the methodology for estimating these numerical errors was not well-
established. Addressing this gap, we will delve into the strategies for estimating
numerical errors in the context of tensor-network based methodologies in Chapter
2.
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CFT data from TRG/TNR
Up to this point, we have discussed the implementation of TRG and TNR methods

in the context of real-space RG analysis. A key aspect of these methods is their
ability to reveal the properties of fixed points in critical lattice models. In practice,
when TRG and TNR are applied to simulate critical lattice models, the renormalized
tensor 𝑇 (𝑛) is observed to converge rapidly to a specific tensor, denoted as 𝑇∗. This
convergence behavior is indicative of the system approaching a fixed point in its
parameter space.

The tensor 𝑇∗, aptly referred to as a fixed-point tensor, is believed to encapsulate
the properties associated with the fixed-point of the system. Notably, Gu and Wen
have proposed methodologies to calculate the scaling dimensions directly from this
fixed-point tensor [7]. In our review, we will adopt a slightly different notation to
facilitate a more seamless integration with the main content of our discussion 9.

The pivotal outcome of Gu and Wen’s research concerns the analysis of the fixed-
point tensor for a square lattice, which is a four-legged tensor mirroring the structure
of the original lattice. A critical step in their methodology involves contracting the
legs along the vertical axis of this tensor. This contraction process leads to a matrix,
from which the scaling dimensions can be inferred based on the eigenvalues. The
process can be represented as:

∑︁
𝑛

𝑇𝛼𝑛𝛽𝑛 =

,

(1.43)

In this formulation, the largest eigenvalue is normalized to one, aligning with the
scaling dimension of the identity operator, 𝑥𝐼 = 0. Subsequently, the scaling
dimensions associated with other operators can be derived from the ratio of the
eigenvalues, denoted as 𝜆𝑛, using the equation:

𝑥𝑛 =
1

2𝜋
ln
𝜆0
𝜆𝑛
. (1.44)

Here, the eigenvalues 𝜆𝑛 are arranged in descending order. This methodology
offers a robust means to extract scaling dimensions from the fixed-point tensor,
providing a valuable tool for analyzing the critical properties of the system. By

9While our explanation is fundamentally equivalent to that of Gu and Wen, we approach the
topic using the energy basis, in contrast to their use of the character basis of CFTs.
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utilizing the eigenvalue ratios, one can effectively determine the scaling dimensions
corresponding to various operators, thereby gaining deeper insights into the nature
of the critical points in the lattice model.

To understand why scaling dimensions are reflected in the eigenvalues of renormal-
ized tensors, let us revisit the nature of renormalized tensors in TRG/TNR schemes,
as discussed in the previous section. In these schemes, each RG step corresponds
to a scale transformation with a factor of 𝑏 =

√
2. Consequently, after 𝑛 steps of

coarse-graining, the renormalized tensor effectively represents the tensor networks
of a system whose size has been scaled to 𝐿 =

√
2
𝑛
. This process can be visualized

schematically as shown below:

(1.45)

In this 𝐿×𝐿 tensor network, contracting the vertical indices transforms the network
into a cylindrical shape. The eigenvalues of the resultant matrix are essentially the 𝐿
repetitions of the column-to-column transfer matrix, which I will henceforth refer to
simply as the ’transfer matrix’. In the context of classical-quantum correspondence,
a single layer of the transfer matrix equates to a translation in imaginary time. In
one-dimensional quantum systems, this translation corresponds to the Hamiltonian.
Consequently, there exists a relationship between the eigenvalues of the transfer
matrix and the spectrum of the one-dimensional Hamiltonian, 𝐸𝑛 (𝐿), as follows:

𝜆𝑛 = 𝑒
−𝐿𝐸𝑛 (𝐿) , (1.46)

where the 𝐸𝑛 values are arranged in ascending order, such that 𝐸0 represents the
ground state. This perspective enables the subsequent chapters to analyze the transfer
matrix spectrum within the framework of Hamiltonian formalism.

At criticality, the system’s conformal invariance enables the computation of the
energy spectrum, 𝐸𝑛 (𝐿). Consider an infinitesimal transformation defined as 𝑟′𝜇 =

𝑟𝜇 + 𝜖𝜇. Within this framework, the variation of the action can be articulated as:

𝛿𝑆 = −
∫

𝑑2𝑟

2𝜋
𝑇𝜇𝜈 (𝑟)𝜕𝜇𝜖𝜈 (𝑟), (1.47)
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where 𝑇𝜇𝜈 denotes the stress tensor. In two-dimensional systems at criticality, con-
formal invariance is a key characteristic. This invariance includes transformations
such as translations, rotations, dilatations, and special conformal transformations.
As a result, conformal transformations in these systems can be represented through
analytic functions on the complex plane, using the transformation 𝑧 → 𝑤(𝑧), where
𝑧 = 𝑥 + 𝑖𝑦 and 𝑧 = 𝑥 − 𝑖𝑦.

The generators of these conformal transformations are expressed as𝑇 (𝑧) = 1
4 (𝑇𝑥𝑥−

𝑇𝑦𝑦 − 2𝑖𝑇𝑥𝑦) and 𝑇 (𝑧) = 1
4 (𝑇𝑥𝑥 − 𝑇𝑦𝑦 + 2𝑖𝑇𝑥𝑦). The variation of an operator 𝐴

under conformal transformations is effectively encapsulated by the Ward-Takahashi
identity:

𝛿𝜖 𝐴(𝑧, 𝑧) =
∮
𝐶𝑧

𝑑𝜁

2𝜋𝑖
𝜖 (𝜁)𝑇 (𝜁)𝐴(𝑧, 𝑧). (1.48)

This equation implies that the variation of 𝐴(𝑧, 𝑧) can be computed by applying
the product of 𝜖 and the stress tensor 𝑇 to 𝐴, followed by performing a contour
integration around the point 𝑧. To facilitate this calculation, it is useful to express
the stress tensor through Laurent expansions:

𝑇 (𝑧) =
∑︁
𝑛∈Z

𝑧−𝑛−2𝐿𝑛, 𝑇 (𝑧) =
∑︁
𝑛∈Z

𝑧−𝑛−2 𝐿̄𝑛.

Here, 𝐿𝑛 and 𝐿̄𝑛 serve as the generators of conformal transformations and obey the
Virasoro algebra, a cornerstone of CFT. The Virasoro algebra is given by:

[𝐿𝑚, 𝐿𝑛] = (𝑚 − 𝑛)𝐿𝑚+𝑛 +
𝑐

12
(𝑚3 − 𝑚)𝛿𝑚+𝑛,0, (1.49)

where 𝑐 represents the central charge, a fundamental characteristic of the CFT. The
central charge is a critical parameter that helps classify the universality class of
the theory. It provides an intuitive measure of the number of bosonic excitations
present: for instance, a theory with 𝑛 decoupled free bosons has a central charge of
𝑐 = 𝑛, while a theory with 𝑛 decoupled fermions has 𝑐 = 𝑛/2.

In this framework using the stress tensor, the dilatation 𝐷̂ is defined as following:

𝐷̂ =

∮
𝑑𝑧

2𝜋𝑖
𝑧𝑇 (𝑧) +

∮
𝑑𝑧

2𝜋𝑖
𝑧𝑇 (𝑧), (1.50)

= 𝐿0 + 𝐿̄0. (1.51)

The eigenvalues of 𝐿0 and 𝐿̄0 are conformal weights denoted as (ℎ, ℎ̄), and the
scaling dimension 𝑥 = ℎ + ℎ̄ becomes indeed the eigenvalue of the dilatation.
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Figure 1.7: The conformal mapping from a plane to a cylinder. The black and red
dotted circles on the plane correspond to different time slices on the cylinder. As
a result, the scale translation indicated by the red arrow on the 𝑧-plane transforms
into a translation in imaginary time on the 𝑤-axis.

The intriguing aspect of dilatation in two-dimensional conformal field theory is
that its generator, 𝐷̂, can be reinterpreted as the generator of translation in imaginary
time, denoted as 𝐻̂𝑃, in a (1+1)-dimensional context. This relationship becomes
evident when considering the conformal mapping𝑤 = 𝐿

2𝜋 ln 𝑧, as depicted in Fig. 1.7.

In this mapping, the original 𝑧-plane is transformed onto a cylinder with circum-
ference 𝐿. The cylinder can be viewed as a quantum system with size 𝐿 and periodic
boundary conditions in one dimension. The translation in scale, represented by the
red arrow on the left panel of Fig. 1.7, corresponds to a translation in time on the
cylinder. Since the energy density in a quantum system is the diagonal 𝑡 component
of the stress tensor, it follows that the energy of a finite quantum system can be cal-
culated using 𝐷̂. Conversely, if we know how the stress tensor 𝑇 transforms under
conformal transformations, we can deduce the system’s energy. This transformation
is known and is given by:

𝑇 (𝑧) =
(
𝑑𝑤

𝑑𝑧

)2
𝑇 (𝑤) + 𝑐

12
{𝑤, 𝑧}, (1.52)

where {𝑤, 𝑧} is the Schwarzian derivative.

The Hamiltonian on the cylinder is then expressed as:

𝐻𝑃 =

∫ 𝐿

0

𝑑𝑥

2𝜋
(𝑇cyl(𝑤) + 𝑇cyl(𝑤))

=
2𝜋
𝐿
(𝐿0 + 𝐿0 −

𝑐

12
), (1.53)
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yielding the energy 𝐸𝑛 = 2𝜋
𝐿
(𝑥𝑛 − 𝑐

12 ) [14, 15]. Therefore, the scaling dimension/the
energy spectrum can be calculated from the energy spectrum of the transfer matrix
in 𝑦 direction 𝜆𝑖 = 𝑒−2𝜋(𝑥𝑖− 𝑐

12 ) , being consistent with Eq. (1.46).

In lattice models, it is crucial to consider the contribution of bulk energy when
analyzing the energy spectrum. This consideration leads to the following expressions
for the energy spectrum:

𝐸𝑛 − 𝐸0 =
2𝜋
𝐿
𝑥𝑛, (1.54)

𝐸0 = 𝜖0𝐿 − 𝜋𝑐

6𝐿
. (1.55)

However, a challenge arises in determining the central charge 𝑐 due to the lack
of a sufficient number of equations to separate the contribution of the bulk energy.
To address this, one can utilize the partition function from the previous RG step,
denoted as 𝑍 (𝑛 − 1):

𝑍 (𝑛 − 1) = Tr𝑥𝑖 exp
(
−2𝜋

(
𝑥𝑖 −

𝑐

12

)
− 𝜖0𝑏

2𝑛−2
)
. (1.56)

For the fixed-point tensor, it is reasonable to assume that both 𝑐 and 𝜖0 remain
constant. Under this assumption, the central charge can be determined as follows:

𝑐 =
6
𝜋

1
𝑏2 − 1

(
𝑏2 ln𝜆(𝑛−1)

0 − ln𝜆(𝑛)0

)
. (1.57)

A widely used formula for calculating the central charge is given by [7]:

𝑐 =
6
𝜋

[
𝑏2

𝑏2 − 1

(
ln 𝑍 (𝑛 − 1) − ln 𝑍 (𝑛)

𝑏2

)
+ ln

𝜆
(𝑛)
0

𝑍 (𝑛)

]
. (1.58)

In the critical case, Eqs.(1.57) and (1.58) are equivalent since 𝜆
(𝑛)
0
𝑍 (𝑛) =

𝜆
(𝑛−1)
0

𝑍 (𝑛−1) . How-
ever, Eq.(1.58) may become unstable when the system size surpasses the correlation
length. In this thesis, we have calculated the effective central charge using Eq. (1.58).

Through this methodology, we are able to extract the central charge, a key param-
eter in conformal field theory that characterizes the universality class of the model.
This approach enables a deeper understanding of the critical properties of lattice
models, particularly in the context of tensor network renormalization and finite-size
scaling theory.
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How to read CFT dictionaries: Character
To determine the applicability of a specific Conformal Field Theory (CFT) to your

models, one effective approach is to utilize the concept of the ’character’, a tool that
allows you to decipher the energy spectrum of the model. By comparing the energy
spectrum of your model with known results in CFT literature, you can ascertain the
universality class of the model in question. This method offers a practical solution
to the often esoteric nature of CFT literature, facilitating its application to specific
models.

In the previous section, we discussed how the partition function, excluding bulk
energy contributions, is expressed as:

𝑍 (𝐿, 𝐿) = Tr exp
[
−2𝜋(𝐿0 + 𝐿̄0 −

𝑐

12
)
]
, (1.59)

where the eigenvalue of (𝐿0 + 𝐿̄0) corresponds to the scaling dimension 𝑥𝑖. The key
takeaway is that the trace in Eq. (1.59) is calculated using the transfer matrix basis,
meaning the eigenvalues of the transfer matrix in the 𝑦-direction are predicted to
be 𝑒−2𝜋(𝑥𝑖− 𝑐

12 ) . For the partition function of a rectangular shape, such as 𝑍 (𝐿, 2𝐿),
the eigenvalue becomes 𝑒−4𝜋(𝑥𝑖− 𝑐

12 ) , reflecting the squaring of eigenvalues due to
the double transfer distance. Moreover, the spectrum of 𝑍 (2𝐿, 2𝐿) is identical to
that of 𝑍 (𝐿, 𝐿), and 𝑍 (2𝐿, 4𝐿) mirrors 𝑍 (𝐿, 2𝐿). This uniformity results from the
scale-invariance inherent in CFT, with the shape ratio 𝐿𝑦

𝐿𝑥
being the critical factor.

Therefore, the partition function is often represented in CFT literature as:

𝑍 (𝑞) = Tr𝑞𝐿0− 𝑐
24 𝑞 𝐿̄0− 𝑐

24 , (1.60)

where 𝜏 =
𝑖𝐿𝑦

𝐿𝑥
, 𝑞 = 𝑒2𝜋𝑖𝜏, and 𝑞 = 𝑒−2𝜋𝑖𝜏∗ . Here, 𝜏 is known as the modular

parameter. Defining this parameter allows for the generalization of the partition
function concept to parallelograms, as illustrated below:
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Figure 1.8: The scaling dimensions of the critical Ising model that are obtained from
the transfer matrix spectrum of Loop-TNR. The blue dotted line are the theoretical
values from the character.

With periodic boundary conditions on both edges, this setup equates to the partition
function on a torus, a phenomenon termed modular invariance. This principle
imposes significant constraints on CFT. In the context of transfer matrix spectra,
considering the spectrum on a parallelogram is insightful, as Eq. (1.60) encapsulates
information about the conformal spin. This arises from the phase acquired by the
operator due to momentum when the real part of 𝜏 is non-zero. As depicted in
Fig. 1.7, this shift on the plane corresponds to the additional phase acquired during
operator rotation around the origin. Here, we specifically address the case where
𝜏 = 𝑖. For a broader understanding encompassing more generic cases, readers are
encouraged to consult comprehensive CFT literature [3].

"An essential aspect to understand is that Eq.(1.60) possesses a universal form,
and its specifics are precisely known for certain universality classes. For instance,
the partition function of the Ising CFT is expressed as:

𝑍 (𝑞) = |𝜒0(𝑞) |2 +
���𝜒 1

16
(𝑞)

���2 + ���𝜒1
2
(𝑞)

���2 . (1.61)

Here, 𝜒0(𝑞), 𝜒 1
16
(𝑞), and 𝜒1

2
(𝑞) correspond to the excitations of the 𝐼, 𝜎, and 𝜖

families, respectively, and are known as characters. These characters often con-
tain known quantities, allowing for the prediction of low-lying energies or scaling
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dimensions. For the Ising model, the characters are as follows:

𝑞𝑐/24𝜒0(𝑞) = 1 + 𝑞2 + 𝑞3 + 2𝑞4 + 2𝑞5 + · · · , (1.62)

𝑞𝑐/24𝜒 1
16
(𝑞) = 𝑞1/16(1 + 𝑞 + 𝑞2 + 2𝑞3 + 2𝑞4 + 3𝑞5 + · · · ), (1.63)

𝑞𝑐/24𝜒1
2
(𝑞) = 𝑞1/2(1 + 𝑞 + 𝑞2 + 𝑞3 + 2𝑞4 + 2𝑞5 + · · · ). (1.64)

By substituting Eqs.(1.62-1.64) into Eq.(1.60) and comparing it with Eq.(1.59), we
can identify low-lying scaling dimensions from the exponents of 𝑞. For the Ising
model, we obtain 𝑍 (𝑞) = 𝑞−𝑐/12(1 + 𝑞1/8 + 𝑞1 + 2𝑞9/8 + 4𝑞2 + · · · ), leading to the
scaling dimensions 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, · · · = 0, 1

8 , 1,
9
8 ,

9
8 , 2, · · · . This aligns with

the numerical results of the critical Ising model, as demonstrated in Fig. 1.8.

In a similar vein, by comparing the character of a potential universality class
from CFT literature with your numerical data, you can accurately determine the
universality class of an unknown phase transition in lattice models.

37



C h a p t e r 2

FINITE-SIZE AND FINITE BOND DIMENSION EFFECTS OF
TENSOR NETWORK RENORMALIZATION

In this chapter, we introduce a comprehensive procedure aimed at extracting the
running coupling constants denoted as 𝑔𝑛 (𝐿) of the underlying field theory for
classical statistical models on two-dimensional lattices. This approach synergizes
TNR with the finite-size scaling principles of CFT. Our methodology extends Gu
and Wen’s analysis, originally focused on the transfer matrix spectrum of critical
systems, to encompass off-critical systems.

In systems away from criticality, the spectral properties exhibit a departure from
scale invariance during the RG steps, deviating from the universal values charac-
teristic of CFT. We propose that these deviations are indicative of the RG flow.
By meticulously analyzing these deviations, we can calculate the running coupling
constants with extremely high precision at each scale. This process enables us to
track the evolution of these coupling constants through successive scales, thereby
offering a detailed visualization of the RG flow. To demonstrate the efficacy of our
approach, we apply it to classical lattice models such as the Ising and three-state Potts
models. This concept is also extended to determine the transition with extremely
high precision.

Furthermore, we explore the potential of utilizing the eigenvectors of the transfer
matrix to compute another critical component of CFT data: the OPE coefficients.
This advancement in our methodology allows us to derive a complete set of CFT
data from the TRG/TNR scheme. The ability to obtain both the running coupling
constants and OPE coefficients marks a significant step forward in our understanding
of these models, bridging the gap between tensor network approaches and the rich
theoretical framework of CFT.

Finally, utilizing our new methodology, we reveal the limitations due to finite bond
dimension 𝐷 on TNR applied to critical systems. We find that a finite correlation
length is induced by the finite bond dimension in TNR, and it can be attributed
to an emergent relevant perturbation that respects the symmetries of the system.
The correlation length shows the same power-law dependence on 𝐷 as the "finite
entanglement scaling" of the Matrix Product States. Using this, we can estimate the
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errors arising from TRG/TNR scheme, which was unclear before.

The following sections mainly discuss the Ising and three-state Potts models on
the square lattice. The energy (classical Hamiltonian) of the Ising and three-state
Potts models are

E𝐼𝑠𝑖𝑛𝑔 = −
∑︁
⟨𝑖, 𝑗⟩

𝜎𝑖𝜎𝑗 − ℎ
∑︁
𝑖

𝜎𝑖, (2.1)

E𝑃𝑜𝑡𝑡𝑠 = −
∑︁
⟨𝑖, 𝑗⟩

𝛿𝑠𝑖 ,𝑠 𝑗 , (2.2)

where 𝜎𝑖 = ±1(Ising) and 𝑠𝑖 = 0, 1, 2(three-state Potts). The first terms and ℎ rep-
resent the nearest-neighbor interactions and the uniform magnetic field. Employing
the temperature𝑇 , the Boltzmann weight is defined as 𝑒−E/𝑇 , where we set the Boltz-
mann constant to unity. Our primary focus in this chapter is the Ising model, while
a detailed discussion of the three-state Potts model is provided in the appendix. The
Ising model reaches its critical point at (𝑇, ℎ) = (𝑇𝑐, 0), where 𝑇𝑐 = 2/ln (1 +

√
2).

At this criticality, physical quantities like the spin-spin correlation function are
governed by the Ising CFT, which comprises three primary operators: the identity
operator 𝐼, magnetic operator 𝜎, and energy operator 𝜖 .

In the context of the lattice model, a shift from the critical temperature and the
application of a magnetic field correspond to the perturbative insertion of 𝜖 and
𝜎 into the effective Hamiltonian. As a result, 𝜎 is odd in the Z2 spin-flip, while
𝐼 and 𝜖 are even. Given the operator structure of the CFT, certain quantities are
consequently fixed.

2.1 Operator product expansion coefficients
Operator product expansion is another fundamental concept in field theory and

statistical mechanics as explained in the previous chapter [16, 17]. Since OPE
coefficients determine the structure of the field theory, their computation is quite
important. Numerical computation of OPE coefficients [18, 19] has not been so
straightforward compared to that of scaling dimensions. Here, we present a simpler
way to compute them, which is applicable to TRG [6], HOTRG [20], and Loop-
TNR [10].

The renormalized tensor 𝑇 (𝑛) contracted in 𝑥-direction is a transfer matrix in the
𝑦-direction. While the eigenvalues of the transfer matrix correspond to the energy
or scaling dimension of the primary operators, the eigenvectors thereof are the
wavefunctions of the corresponding “primary states” |𝜓𝑛 (𝐿)⟩. This is graphically
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𝜓𝛼 𝜓𝛽, 𝜓𝛾 𝐶𝛼𝛽𝛾 22𝑥𝛽+2𝑥𝛾−𝑥𝛼𝐴𝛼𝛽𝛾/𝐴𝐼 𝐼 𝐼
𝐼 𝜎, 𝜎 1 0.8938
𝜎 𝜎, 𝐼 1 0.9473
𝐼 𝜖, 𝜖 1 0.9966
𝜖 𝜖, 𝐼 1 0.9968
𝜖 𝜎, 𝜎 0.5 0.5007
𝜎 𝜎, 𝜖 0.5 0.2705

Table 2.1: The numerically obtained OPE coefficients of the Ising CFT from TRG.
The bond dimension and the system size are 𝐷 = 56 and 𝐿 = 16

√
2(9 RG steps),

respectively.

represented below.

Note that the tensor has been rotated for ease of viewing. We do not change the
contracted index. Likewise, we can compute the wavefunctions of the system size
2𝐿 as depicted below.

|𝜓𝑛 (𝐿)⟩ and |𝜓𝑛 (2𝐿)⟩ are one-leg and two-leg tensors, respectively. Thus, we
propose a novel method for calculating OPE coefficients, utilizing the contraction of
eigenstates derived from the transfer matrix of the renormalized tensor. Specifically,
this method involves computing the overlaps between the states |𝜓𝛼 (2𝐿)⟩ and the
tensor product |𝜓𝛽 (𝐿)⟩ ⊗ |𝜓𝛾 (𝐿)⟩ by contracting their respective indices. This
computed quantity is directly proportional to the OPE coefficients. This approach
aligns with the discussion on the overlap of quantum wave functions in Ref. [21–23].

In CFT, the overlap of wavefunctions, denoted as ⟨𝜓𝛼 (2𝐿) |𝜓𝛽 (𝐿)𝜓𝛾 (𝐿)⟩, is pro-
portional to the ’pants diagram’ of path integrals. This relationship can be elucidated
through a review of how eigenstates |𝜓𝑛 (𝐿)⟩ are expressed in CFT.
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For the ground state, the process begins with a random initial state |𝜓𝑖𝑛𝑖⟩, which
undergoes imaginary time evolution:

|𝜓0⟩ ∝ lim
𝜏→∞

𝑒−𝜏𝐻 |𝜓𝑖𝑛𝑖⟩, (2.3)

where the dominance of the smallest eigenvalue of the Hamiltonian after sufficient
imaginary time evolution ensures the ground state is attained. To obtain primary
states corresponding to excited states, initial eigenstates are prepared, with state-
operator correspondence in CFT allowing the creation of states by inserting the
corresponding operator into the vacuum. On a cylinder, these operators acquire
a prefactor

(
2𝜋
𝐿

)−𝑥𝑛
, derived from Eq. (1.24). Additionally, an exponential factor

𝑒
2𝜋
𝐿
𝑥𝑛𝜏 should be placed to ensure normalization relative to the ground state as in

Eq. (1.53)1. Consequently, the eigenstate at the 𝜏 = 0 slice is given by:

|𝜓𝑛 (𝐿)⟩ = lim
𝜏→−∞

𝑒−
2𝜋
𝐿
𝑥𝑛𝜏

(
2𝜋
𝐿

)−𝑥𝑛
𝜓
𝑐𝑦𝑙
𝑛 (𝜏) |𝐼𝑐𝑦𝑙⟩, (2.4)

= 𝜓𝑛 (−∞)|𝐼𝑐𝑦𝑙⟩.

This formulation applies to |𝜓𝛽 (𝐿)⟩ and |𝜓𝛾 (𝐿)⟩. Similarly, |𝜓𝛼 (2𝐿)⟩ is constructed
from the infinite future:

|𝜓𝛼 (2𝐿)⟩ = lim
𝜏→∞

𝑒−
𝜋
𝐿
𝑥𝛼𝜏

( 𝜋
𝐿

)−𝑥𝛼
𝜓
𝑐𝑦𝑙
𝛼 (𝜏) |𝐼𝑐𝑦𝑙⟩, (2.5)

= 𝜓𝛼 (∞)|𝐼𝑐𝑦𝑙⟩.

In this setup, these three vectors meet at the 𝜏 = 0 slice, forming the basis for the
’pants diagram’ path integral representation. (It does look like a pair of pants!)

1In essence, Eq. (1.53) states 𝐸𝑛−𝐸0 = 2𝜋
𝐿
𝑥𝑛. We implement the factor in advance to compensate

𝑒−𝜏𝐻 = 𝑒−
2𝜋
𝐿
𝑥𝑛𝜏 .
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In this context, the overlap of the eigenstates can be conceptualized as a three-point
function on the ’pants’ manifold:

𝐴𝛼𝛽𝛾

𝐴𝐼 𝐼 𝐼
= ⟨𝜓𝛼 (∞)𝜓𝛽 (−∞)𝜓𝛾 (−∞)⟩𝑝𝑎𝑛𝑡𝑠, (2.6)

where 𝐴𝛼𝛽𝛾 represents the overlap ⟨𝜓𝛼 (2𝐿) |𝜓𝛽 (𝐿)𝜓𝛾 (𝐿)⟩. To compute this quantity,
a conformal mapping from the ’pants’ manifold to a plane is required. This type
of mapping, common in string theory calculations for string interactions, is well-
understood. The conformal mapping, known as the Mandelstam mapping [24], is
defined as:

𝑧 =
𝐿

2𝜋
[ln(𝑤 − 𝑖) + ln(𝑤 + 𝑖) − 2 ln(𝑤)], (2.7)

where the points 𝑧 = −∞ and 𝑧 = ∞ correspond to 𝑤 = ±𝑖 and 𝑤 = 0, respectively 2.
This mapping, which effectively stitches three cylinders to a plane after opening
them, calls for the additional factor ( 𝑑𝑤

𝑑𝑧
)𝑥𝑛 to the correlation function as in Eq. (1.24).

Thus, Eq. (2.6) is transformed to:

𝐴𝛼𝛽𝛾

𝐴𝐼 𝐼 𝐼
= |𝐽𝛼 |𝑥𝛼 |𝐽𝛽 |𝑥𝛽 |𝐽𝛾 |𝑥𝛾 ⟨𝜓𝛼 (0)𝜓𝛽 (𝑖)𝜓𝛾 (−𝑖)⟩𝑝𝑙𝑎𝑛𝑒, (2.8)

where the three-point function is now evaluated on the plane. The prefactor 𝐽 is
derived from a combination of Eqs. (2.4-2.5) and the ( 𝑑𝑤

𝑑𝑧
)𝑥𝑛 factor:

|𝐽𝛼 | =
���� lim
𝑧→∞

𝑒−
𝜋
𝐿
𝑧
( 𝜋
𝐿

)−1
(
𝑑𝑤

𝑑𝑧

)����
𝑤→0

, (2.9)

|𝐽𝛽 | =
����� lim
𝑧→−∞

𝑒−
2𝜋
𝐿
𝑧

(
2𝜋
𝐿

)−1 (
𝑑𝑤

𝑑𝑧

)�����
𝑤→𝑖

, (2.10)

|𝐽𝛾 | =
����� lim
𝑧→−∞

𝑒−
2𝜋
𝐿
𝑧

(
2𝜋
𝐿

)−1 (
𝑑𝑤

𝑑𝑧

)�����
𝑤→−𝑖

. (2.11)

Upon evaluation, it is straightforward to verify that |𝐽𝛼 | = 1 and |𝐽𝛽 | = |𝐽𝛾 | = 1/2,
and ⟨𝜓𝛼 (0)𝜓𝛽 (𝑖)𝜓𝛾 (−𝑖)⟩𝑝𝑙𝑎𝑛𝑒 = 2𝑥𝛼−𝑥𝛽−𝑥𝛾𝐶𝛼𝛽𝛾. Consequently, the relationship
between the OPE coefficient and the overlap becomes:

𝐴𝛼𝛽𝛾

𝐴𝐼 𝐼 𝐼
= 2𝑥𝛼−2𝑥𝛽−2𝑥𝛾𝐶𝛼𝛽𝛾, (2.12)

2The coefficients of the logarithmic of 𝑤 terms correspond to the length of the string, whereas
its sign is negative for the states in the infinite future. The sum of the prefactors should be zero so
that the total length of the strings from the infinite past is equal to that of the infinite future.
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illustrating how the OPE coefficients are intimately connected to the eigenstate
overlaps within the ’pants’ manifold framework. (For more generic cases, readers
shall consult Ref. [21–23].)

In most cases, the identity operator denoted as 𝐼, corresponds to the ground state
or equivalently the leading eigenvector. Thus, the OPE coefficients 𝐶𝛼𝛽𝛾 can be
computed from the ratio of the overlap 𝐴𝛼𝛽𝛾 and 𝐴𝐼 𝐼 𝐼 , given the scaling dimensions
from the transfer matrix. We benchmark our method by the critical Ising model.
Table. 2.1 shows the numerically obtained OPE coefficients by TRG [6] at 𝐿 = 16

√
2

and 𝐷 = 56. Naturally, there are finite-size corrections to Eq. (2.12). Since
Eq. (2.12) is exact in the thermodynamic limit, using a very large system size 𝐿
might appear desirable. However, as we will discuss later in Sec. 2.4, corrections due
to the finite bond-dimension effect appear for system sizes larger than a correlation
length 𝜉 (𝐷) 3. As reported in Ref. [23], the finite-size effects are significant for𝐶𝜎𝜎𝜖
and 𝐶𝜖𝜖 𝐼 . Nevertheless, even with the moderate size 𝐿 = 16

√
2, the obtained values

𝐶𝐼𝜖𝜖 = 0.9966 and 𝐶𝜖𝜎𝜎 = 0.5007 are rather close to exact CFT results. While we
tested our method by the simplest algorithm, Levin and Nave’s TRG, the method for
calculating OPE is straightforwardly applicable to other TRG and TNR algorithms,
such as HOTRG [20].

2.2 Precise determination of the transition temperature
As we have mentioned earlier, the ratios of the transfer matrix spectrum represent

the scaling dimension as 𝜆𝑛
𝜆0

= exp(−2𝜋𝑥𝑛) at criticality after sufficient coarse-
graining. However, the rescaled energy levels of a lattice model generally depend on
the system size 𝐿, as the effective Hamiltonian of the system contains perturbations
to the CFT. This lets us define a generalized concept of the scaling dimension, which
depends on the system size. We denote it as “rescaled energy" defined as

𝜆𝑛 (𝐿)
𝜆0(𝐿)

= exp(−2𝜋𝑥𝑛 (𝐿)). (2.13)

Figure 2.1 exhibits “the rescaled energy" of the first excited state of the Ising model,
corresponding to 𝑥𝜎. At the critical temperature, which we denote with a red
dotted line, this scaling dimension consistently aligns with the expected value of
1
8 , a characteristic feature of the Ising universality class in two dimensions. This
consistency is observed regardless of the variations in system size 𝐿.

3This effect is even stronger and non-trivial for TRG due to the CDL tensors as discussed in the
previous chapter.
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Figure 2.1: The scaling dimension obtained from the first and second leading
eigenvalue of the transfer matrix of the Ising model as 𝑥𝜎 (𝐿) = 1

2𝜋 ln 𝜆0
𝜆1

. At the
critical temperature, denoted by a red dotted line, the value is consistent with the
scaling dimension 1

8 regardless of the system sizes. Away from criticality, however,
the deviation from 1

8 grows as 𝐿 increases.

However, a notable shift in behavior occurs when the system deviates from the
critical temperature. This observed shift in the behavior of the rescaled energy
𝑥𝜎 (𝐿) is a key aspect of critical phenomena. In off-critical scenarios, 𝑥𝜎 (𝐿) starts
to diverge from its critical value of 1

8 . Notably, as the system size 𝐿 increases, this
deviation becomes more significant. This trend is not just a simple anomaly; rather,
it signifies the evolution of the running coupling constants, denoted as 𝑔𝑛 (𝐿), in the
system.

This relationship between the deviation in scaling dimensions and the running
coupling constants is deeply rooted in the theoretical framework combining pertur-
bation theory with CFT. The perturbation theory, when applied within the context
of CFT, provides a robust explanation for this phenomenon. It elucidates how the
changes in the system’s parameters, as it moves away from criticality, influence the
running coupling constants and consequently, the scaling dimensions.

For a detailed exploration of this relationship and the underlying theoretical prin-
ciples, readers are directed to Sec. A.1 in the appendix. Here, we only use Cardy’s
results [14, 15]. The rescaled energy levels in a finite-size perturbed CFT are given
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as

𝑥𝑛 (𝐿) = 𝑥𝑛 + 2𝜋
∑︁
𝑗

𝐶𝑛𝑛 𝑗𝑔 𝑗 (𝐿), (2.14)

where 𝑔 𝑗 (𝐿) scales as ∝ 𝐿2−𝑥 𝑗 4. Comparing Eq. (2.13) from TNR and Eq. (2.14)
from the conformal perturbation theory, we can obtain the running coupling con-
stants 𝑔 𝑗 (𝐿) at each scale from the finite-size effect 𝛿𝑥𝑛 (𝐿) = 𝑥𝑛 (𝐿) − 𝑥𝑛.

An immediate and practical application of our observations is the precise deter-
mination of critical points. This approach, often referred to as ’level spectroscopy,’
was originally developed to address the complexities of the Berezinskii-Kosterlitz-
Thouless (BKT) transition, particularly noted for its challenges in standard finite-size
scaling analysis. Initially, this technique was applied to quantum spin systems in one
dimension, as demonstrated by Nomura in 1994 [25]. More recently we extended
for classical statistical systems in two dimensions using TNR [26].

The core principle of level spectroscopy is the careful analysis of the energy levels
or eigenvalues, particularly how they shift and evolve as the system approaches and
moves away from criticality. While this technique was conceived in the context of
the BKT transition, its basic concept is broadly applicable to more conventional
types of critical phenomena, such as those observed in the Ising model.

The RG fixed-point for the two-dimensional Ising model has two relevant operators,
the energy density 𝜖 and the magnetization density 𝜎. The coupling constant 𝑔𝜖 for
𝜖 is proportional to the deviation of the temperature from the critical point, and also
scaled ∼ 𝐿 in the small coupling limit 𝑔𝜖 ≪ 1 because 𝑥𝜖 = 1. Thus

𝑔𝜖 (𝐿) ∼ 𝛼(𝑇 − 𝑇𝑐)𝐿, (2.15)

when 𝑔𝜖 (𝐿) ≪ 1. Likewise, the coupling 𝑔𝜎 is proportional to the magnetic field
ℎ and scaled ∼ 𝐿15/8 because 𝑥𝜎 = 1/8. When determining the critical point, we
focus on the critical temperature with zero magnetic fields, where 𝑔𝜎 = 0.

Although the Ising critical phenomena are mostly described by the two relevant
coupling constants 𝑔𝜖 and 𝑔𝜎, more accurate description can be obtained by includ-
ing irrelevant perturbations. Including the leading irrelevant operators, namely the

4The second term in Eq. (2.14) is the first-order perturbation term. In CFT, the unperturbed
eigenstates and perturbations correspond to the primary states and Φ 𝑗 . In this framework, the
corrections to the energy are expressed as ⟨𝑛|𝑔 𝑗Φ 𝑗 |𝑛⟩, which yields the OPE coefficients 𝐶𝑛𝑛 𝑗

45



irrelevant operators with the smallest scaling dimension permitted by the symme-
tries, the effective Hamiltonian of the Ising model is described as following:

𝐻 = 𝐻∗
𝐼𝑠𝑖𝑛𝑔 +

∫ 𝐿

0
𝑑𝑥 [𝑔𝜎𝜎(𝑥) + 𝑔𝜖𝜖 (𝑥)

+ 𝑔𝑇2𝑇2
cyl(𝑥) + 𝑔𝑇2𝑇

2
cyl(𝑥)], (2.16)

where 𝑇cyl and 𝑇cyl are the holomorphic and anti-holomorphic parts of stress tensor
on a cylinder [15]. The holomorphic part 𝑇cyl of the stress tensor on a cylinder is
related to that on the infinite plane 𝑇𝑧𝑧 (𝑧) via the conformal mapping 𝑧 = 𝑒2𝜋𝑤/𝐿 ,
where 𝑤 = 𝜏 + 𝑖𝑥 and 0 ≤ 𝑥 < 𝐿. More explicitly, 𝑇𝑧𝑧 (𝑧) transforms as

𝑇cyl(𝑤) =
(
2𝜋
𝐿

)2 (
𝑧2𝑇𝑧𝑧 (𝑧) −

𝑐

24

)
. (2.17)

This leads to

𝑇cyl(𝑥) =
2𝜋
𝐿

( ∞∑︁
𝑛=−∞

𝐿𝑛𝑒
2𝜋𝑖𝑥/𝐿 − 𝑐

24

)
, (2.18)

where 𝑐 is the central charge characterizing the CFT, and 𝐿𝑛’s are generators of the
Virasoro algebra defined by

𝑇𝑧𝑧 (𝑧) =
∞∑︁

𝑛=−∞

𝐿𝑛

𝑧𝑛+2 , (2.19)

in terms of the holomorphic part 𝑇𝑧𝑧 of the energy-momentum tensor on the infinite
plane. Inserting the above 𝑇cyl and integrating over 0 ≤ 𝑥 < 𝐿 with an appropriate
regularization, the 𝑔𝑇2-term of the perturbation is given as [27]∫

𝑑𝑥𝑇2
𝑐𝑦𝑙 (𝑥) = 𝐿

2
0 −

𝑐 + 2
12

𝐿0 + 2
∞∑︁
𝑛=1

𝐿−𝑛𝐿𝑛 +
𝑐(22 + 5𝑐)

2880

Only the first and second terms affect the energy levels, and the contributions
to 𝑥𝜎 (𝐿) and 𝑥𝜖 (𝐿) are calculated to be − 7

768𝑔𝑇2 and 7
48𝑔𝑇2 respectively. The

computation of the contributions from 𝑇2 is exactly the same, and we denote their
sum as 𝑔. These operators are the leading irrelevant operators for the Ising model
on the square lattice. An important aspect to consider is the origin and implications
of the squared terms of the stress tensor on the cylinder, 𝑇2

cyl and 𝑇2
cyl. These

terms possess conformal spins of +4 and −4, respectively. The presence of these
conformal spins is significant because they lead to the breaking of continuous
rotational symmetry, which is the breaking of Lorentz invariance in Minkowski
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space-time. However, in the context of a square lattice, which only possesses discrete
𝐶4 rotational symmetry, the inclusion of these terms is permissible. The presence
of 𝑇2

cyl and 𝑇2
cyl serves to adjust the symmetry of the continuum theory to match that

of the discrete lattice model. Essentially, these ’irrelevant’ operators play a crucial
role in aligning the theoretical model’s symmetry with the inherent symmetry of the
square lattice. This aspect of conformal spin becomes particularly evident during
odd-numbered RG steps. At these stages, the lattice undergoes a 45-degree rotation,
leading to a sign change in these operators, as indicated by the factor (𝑒𝑖𝜋/4)4 = −1.
This rotation-induced sign change has observable consequences. For instance, when
examining finite-size corrections at criticality, we notice an alternating sign in the
corrections to the scaling dimension, 𝛿𝑥𝜎, at each RG step.

Including the contributions from relevant perturbations, the resulting finite-size
corrections to 𝑥𝜎 (𝐿) and 𝑥𝜖 (𝐿) are shown in Table. 2.2 5. While the exact critical
point is known for the Ising model on the square lattice, let us demonstrate the
determination of the critical point from the TNR spectrum without using prior
knowledge of the critical point (but utilizing the CFT data, assuming that we identify
the universality class). Since we are interested in the critical point at zero magnetic
fields, we can set 𝑔𝜎 ∝ ℎ = 0. The simplest way to determine the critical point
is to look at the lowest rescaled energy level 𝑥𝜎 (𝐿) in the lowest order of the
relevant coupling constant 𝑔𝜖 , ignoring the irrelevant perturbation 𝑔. Within this
approximation, the shift 𝛿𝑥𝜎 (𝐿) = 𝑥𝜎 (𝐿) − 𝑥𝜎 vanishes at the critical point 𝑇 =

𝑇𝑐 where 𝑔𝜖 = 0. Away from the critical point, 𝛿𝑥𝜎 (𝐿) is non-zero and grows
proportionally to 𝐿 because 𝑔𝜖 (𝐿) scales as 𝐿. Because of this, we can identify
the critical point with the temperature where 𝛿𝑥𝜎 (𝐿) = 0 is observed in the TNR
spectrum. However, this estimate suffers from the corrections due to the leading
irrelevant perturbations 𝑇2

cyl and 𝑇2
cyl. Since they have scaling dimension 4, the

corresponding coupling constant is renormalized as 𝑔 ∝ 𝐿−2. This leads to an error
of 𝑂 (𝐿−2) in the naive estimate of the critical point using 𝛿𝑥𝜎 (𝐿) = 0.

We can improve the accuracy by removing the effects of the leading irrelevant
perturbation 𝑔. This can be done by combining the shifts of the rescaled energy
levels 𝛿𝑥𝜎 (𝐿) and 𝛿𝑥𝜖 (𝐿) following Table. 2.2 as

𝛿𝑥cmb ≡𝛿𝑥𝜎 (𝐿) +
1

16
𝛿𝑥𝜖 (𝐿)

= 𝜋𝑔𝜖 + (𝛼𝜎𝜎 + 1
16
𝛼𝜎𝜖 )𝑔2

𝜎 + (𝛼𝜖𝜎 + 1
16
𝛼𝜖𝜖 )𝑔2

𝜖 . (2.20)

5As 𝑇2
cyl and 𝑇2

cyl are not primary operators, we need to pay special attention.
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Figure 2.2: Example of estimating the transition temperature using Loop-TNR. We
set 𝑇− = 2.66 and 𝑇+ = 2.68 as an initial estimate. The level-crossing temperature
𝑇∗(𝐿) is linearly fitted to extrapolate the transition temperature. The insert shows
how we compute 𝑇∗(𝐿) for various system sizes.

Note that the first-order correction in the irrelevant coupling 𝑔 is canceled out. Now
we can identify the critical point by finding the temperature for which 𝛿𝑥cmb ∝
𝑔𝜖 (𝐿) = 0. Having eliminated the effects of the leading irrelevant perturbation
𝑇2

cyl, 𝑇
2
cyl, the dominant error is now caused by the next-leading irrelevant operator

with scaling dimension 6 and thus should be scaled as 𝐿−4.

In practice, the determination of the critical point can be efficiently implemented
as follows. First, we pick up one temperature from each phase: 𝑇+ > 𝑇𝑐 and
𝑇− < 𝑇𝑐, and calculate the combined shift 𝛿𝑥cmb at these temperatures. The phase
of the system can be confirmed by observing the growth of 𝛿𝑥cmb as the system size
increases because it increases/decreases if the system is in the high-temperature/low-
temperature phase (if the initial choice of the temperature turns out to be wrong,
change the temperature and restart the process). Next, linear interpolations of the
combined shift between the two temperatures 𝑇± are made, and the crossing of
the lines for system sizes 𝐿 and

√
2𝐿 is found, as shown in the insert of Fig. 2.2.

We denote the temperature where the two lines cross as 𝑇∗(𝐿). Because of the
second-order contribution 𝑂 (𝑔𝜖2) in Eq. (2.20), the crossing temperature 𝑇∗(𝐿)
obtained by the linear interpolation deviates from the true critical point 𝑇𝑐 as
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model operator Rescaled energy level

Ising model 𝑥𝜎 (𝐿) 1
8 + 𝛼𝜎𝜎𝑔2

𝜎 + 𝜋𝑔𝜖 + 𝛼𝜖𝜎𝑔2
𝜖 − 7

768𝜋𝑔

𝑥𝜖 (𝐿) 1 + 𝛼𝜎𝜖 𝑔2
𝜎 + 𝛼𝜖𝜖𝑔2

𝜖 + 7
48𝜋𝑔

Table 2.2: The finite-size scaling dimension of the Ising model. 𝛼 is a constant
determined from the second-order perturbation. Since 𝑔𝑇2 and 𝑔𝑇2 decay in the
same manner, we write them as 𝑔.

𝑇∗(𝐿) − 𝑇𝑐 ∝ 𝑔𝜖 ∝ 𝐿, when 𝑔𝜖 ≪ 16. The critical point 𝑇𝑐 is estimated by fitting
𝑇∗(𝐿) by a linear function of 𝐿 as 𝑇∗(𝐿) ∼ 𝑇𝑐 + const.𝐿. While the “extrapolation”
to 𝐿 = 0 used here might look unusual, this procedure is done to remove the
effect of the nonlinearity due to 𝑂 (𝑔𝜖2) in Eq. (2.20), and the condition 𝛿𝑥cmb = 0
itself is accurate for 𝑇𝑐 up to the error of 𝑂 (𝐿−4) due to the next-leading irrelevant
perturbations. An example of the estimate of 𝑇𝑐 with the above procedure with
the choice of the temperatures 𝑇+ = 2.68 and 𝑇− = 2.66 and with system sizes
16 ≤ 𝐿 < 64 is depicted in Fig. 2.2. The final estimate of the critical point is
𝑇est
𝑐 = 2.269177. Remarkably, even with the choice of two temperatures differ by

10−2 and the relatively low bond-dimension 𝐷 = 20, the estimated critical point is
quite accurate: 𝑇est

𝑐 −𝑇𝑐 = −8.11×10−6. This is thanks to the suppression of the error
to 𝑂 (𝐿−4) by eliminating the contributions from the leading irrelevant operators.
Once the critical point is estimated with good accuracy with this procedure, the
accuracy can be further improved by choosing 𝑇± closer to the estimated critical
temperature and then applying the same procedure.

2.3 Renormalization group flow
The comparison between the TNR spectrum in Eq. (2.13) and the conformal per-

turbation theory in Eq. (2.14) can also be used to extract running coupling constants
and their scale dependence, enabling visualization of the RG flow. This analysis
will be particularly useful in investigating the effects of finite bond dimensions in
detail, a topic we plan to explore comprehensively in Sec. 2.4.

For the Ising model, the extraction of running coupling constants is based on
observing shifts in the rescaled energy levels, as detailed in Table 2.2. It is also
beneficial to consider the combined shift as described in Eq. (2.20). Given that 𝑔𝜎
and 𝑔𝜖 are small near the criticality, we simplify our calculations by neglecting 𝑔2

𝜖 for
6It is proportional to 𝐿2−𝑥thermal , where 𝑥thermal is the scaling dimension of the thermal operator.
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Figure 2.3: (Left panel) The system size dependence of 𝛿𝑥cmb = 𝛿𝑥𝜎 + 𝛿𝑥𝜖/16 for
ℎ = ±10−5(purple and green), 𝑇 = 1.0001𝑇𝑐(red) and 𝑇 = 0.9999𝑇𝑐(blue). The
purple and green dots are on top of each other, and “+" denotes the data with a
negative sign. After removing the 𝐿−2 irrelevant perturbations, the next leading
𝐿−4 perturbation shown with a blue dotted line appears. The data was obtained
via Loop-TNR with a bond dimension of 𝐷 = 24, which was deemed sufficient
for the finitely-correlated systems being considered. (Right panel) The resulting
renormalization group flow. Only data after six steps are exhibited, where the 𝐿−4

perturbations disappear.

ℎ = 0. Consequently, we redefine two relevant coupling constants for convenience:
𝑔𝑡 = 𝜋𝑔𝜖 and 𝑔ℎ =

√︃
(𝛼𝜎𝜎 + 1

16𝛼
𝜎
𝜖 )𝑔𝜎. In this way, the combined shift Eq. (2.20)

simply gives 𝑔𝑡 when ℎ = 0 and 𝑔ℎ2 when𝑇 = 𝑇𝑐, in the lowest order of 𝑔𝑡 , 𝑔ℎ. Using
these relations, we can read off the relevant coupling constants 𝑔𝑡 or 𝑔ℎ from the
TNR data, as shown in Fig. 2.3(𝑏). As we have discussed in the previous subsection,
the effects of the leading irrelevant perturbations 𝑇2

cyl, 𝑇
2
cyl with scaling dimension 4

are eliminated in the combined shift Eq. (2.20), and thus the finite-size correction is
now of 𝑂 (𝐿−4), due to the next-leading irrelevant operators with scaling dimension
6. This 𝑂 (𝐿−4) scaling is indeed observed in Fig. 2.3 near the critical point for
small system size 𝐿 when relevant perturbations are still negligible. Since it is safe
to say that these contributions disappear after five RG steps, we can conclude that
the origin of 𝑔𝑡 and 𝑔ℎ are purely from 𝜖 and 𝜎 after six steps.

The right panel illustrates the scale-dependence of the coupling constants 𝑔𝑡 and
𝑔ℎ. It is nothing but the RG flow of the Ising critical point, and we conclude that we
succeed in calculating the RG flow of the celebrated Ising fixed-point.
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There is one thing to note on the left panel of Fig. 2.3. While the combined
shift (2.20), which is an estimator for |𝑔ℎ |2, scales as 𝐿3.75 at 𝐿 < 103, it starts to
flatten and scales as 𝐿 at 𝐿 > 103. This behavior has a rather simple origin. Since
the magnetic perturbation is relevant, the system has a finite correlation length or
equivalently, a non-zero gap Δ. This implies that the rescaled energy levels are
proportional to 𝐿 for sufficiently large system size 𝐿 ≫ Δ−1. As a consequence,
the shift Eq. (2.20) also grows proportionally to 𝐿. In this regime, the conformal
perturbation theory breaks down (higher-order contributions are important), and we
no longer identify the shift Eq. (2.20) with |𝑔ℎ |2. This should be distinguished from
the 𝐿-linear behavior of the combined shift Eq. (2.20) observed for 𝐿 > 10 with
ℎ = 0 and 𝑇 ≠ 𝑇𝑐, which corresponds to the renormalization of 𝑔𝑡 ∝ 𝐿 because of
𝑥𝜖 = 1. The 𝐿-linear behavior due to the gap is observed in the non-perturbative
regime 𝛿𝑥𝜖,𝜎 ≫ 𝑥𝜖,𝜎, whereas the 𝐿-linear behavior due to the scaling is observed
in the perturbative regime 𝛿𝑥𝜖,𝜎 ≪ 𝑥𝜖,𝜎.

2.4 Finite bond-dimension effects
Let us examine the impacts of a finite bond-dimension 𝐷 on TNR from the per-

spective of our method. In any computation that employs tensor networks, it is
necessary to restrict the bond dimension to a finite value 𝐷 due to the increasing
storage requirements and computational costs associated with larger bond dimen-
sions. The finiteness of the bond dimension inevitably leads to a loss of information
in each step of renormalization after a certain number of iterations. Although TNR
can nominally handle arbitrary large systems, and the TNR-type calculations are of-
ten used to study extremely large systems, we have to be careful about the limitations
due to the finite bond dimension.

The limitation of the finite bond dimension 𝐷 on the matrix product state (MPS) is
characterized by the finite (maximum) correlation length 𝜉 (𝐷) of the MPS [28–30].
The correlation length of MPS is known to obey the scaling law

𝜉 (𝐷) ∼𝐷𝜅, (2.21)

𝜅 =
6

𝑐(1 +
√︃

12
𝑐
)
. (2.22)

While the TNR-type calculation of two-dimensional statistical systems appears
rather different from the MPS applied to one-dimensional quantum systems, the
emergence of the finite correlation length 𝜉 (𝐷) obeying the similar scaling law (2.21)
was reported in Ref. [31] for a HOTRG calculation of the critical Ising model in two
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Figure 2.4: Shift |𝛿𝑥𝜎 (𝐿) | for the Ising model at 𝑇 = 𝑇𝑐, ℎ = 0 computed by Loop-
TNR with 𝐷 = 32. There is little finite-𝐷 effect for small system sizes 𝐿 < 256.
The emergent perturbations of 𝜖 and 𝜎 appear at 𝐿 ∼ 256 and 𝐿 ∼ 104, scaling
as 𝐿 and 𝐿15/4. The induced gap by finite-𝐷 goes towards constant at 𝐿 > 105 as
denoted with the purple dotted line.

dimensions. The exponent 𝜅 for the Ising model was estimated to be approximately
2, which is close to the MPS exponent (2.22) 𝜅 = 2.03425 . . . for the Ising CFT with
central charge 𝑐 = 1/2. A similar emergence of the finite correlation length 𝜉 (𝐷)
was also reported in our TNR finite-size scaling study of the two-dimensional XY
model [26], with the MPS exponent (2.22) for 𝑐 = 1.

In the following, using our TNR finite-size scaling methodology, we will demon-
strate that the emergence of the finite correlation length due to the finite bond
dimension in TNR can be attributed to an emergent relevant perturbation. Further-
more, we present evidences for the scaling (2.21) with the MPS exponent (2.22) in
TNR of Ising and three-state Potts models.

Emergent relevant perturbation
If a finite correlation length emerges in the TNR, it would be natural to identify the

renormalized tensor with a Hamiltonian for the system away from the critical point,
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that is, an RG fixed-point (CFT) Hamiltonian perturbed with relevant operators

𝐻FB(𝐷) = 𝐻∗
CFT +

∑︁
𝑖

∫ 𝐿

0
𝑑𝑥𝑔𝑖 (𝐷, 𝐿)Φ𝑖 (𝑥, 𝐷), (2.23)

where 𝐻𝐹𝐵 is the effective Hamiltonian of the finite-𝐷 system and Φ𝑖 (𝑥, 𝐷) are the
scaling operators representing the perturbations. In this view, we expect relevant
perturbations to emerge in order to mimic the finite correlation length imposed by
the finite bond dimension.

To demonstrate the emergence of the relevant perturbation, we investigate the
system-size dependence of the shift in the rescaled energy levels 𝛿𝑥𝜎. In Fig. 2.4,
we show the absolute value of the shift |𝛿𝑥𝜎 | as a function of the system size 𝐿
used in calculating the transfer matrix spectrum in TNR exactly at the critical point
ℎ = 0, 𝑇 = 𝑇𝑐. The conformal perturbation theory in Eq. (2.14) implies that the
shift 𝑥𝜎 contains contributions from the irrelevant perturbations. Since the leading
irrelevant operators at the critical points are 𝑇2

cyl and 𝑇2
cyl with scaling dimension

4, we expect 𝛿𝑥𝜎 (𝐿) decays as 𝐿−2. (This is to be contrasted with Eq. (2.20) and
Fig. 2.3, in which the contributions from 𝑇2

cyl and 𝑇2
cyl are eliminated.) The expected

𝐿−2 behavior in the shift 𝛿𝑥𝜎 (𝐿) is indeed observed for small system sizes 𝐿 < 256.
For larger system sizes, however, |𝛿𝑥𝜎 (𝐿) | starts to increase, deviating from the
conformal perturbation theory scaling 𝐿−2. We identify the finite bond-dimension
𝐷 effects as the origin of this deviation. More remarkably, we can observe a clear
scaling behavior of the deviation. That is, the shift |𝛿𝑥𝜎 (𝐿) | scales with the system
sizes as 𝐿 and 𝐿15/4 for 256 < 𝐿 < 104 and 104 < 𝐿, respectively. Compared with
the off-critical cases in Fig. 2.3, we realize that these scalings are identical to those
induced by the thermal and magnetic perturbations. In other words, the relevant
perturbations emerge in the TNR calculation.

Let us first discuss the 𝐿15/4 scaling of the shift, observed for 𝐿 > 104. This
can be understood as the effect of an emerging magnetic perturbation ℎ because its
second order perturbation scales as 𝑔2

𝜎 ∝ 𝐿15/4. Although the magnetic perturbation
ℎ is forbidden by the Z2 spin-flip symmetry, the symmetry could be broken by the
limitations in the machine precision. Once the spin-flip symmetry is broken, the
magnetic field ℎ, which is a relevant perturbation, is effectively generated. Even if
the effective magnetic field ℎ is extremely small, it will be enhanced at each RG step
and eventually dominate the system at sufficiently large length scales. This is what
we observe for 𝐿 > 104. This phenomenon should be related to machine precision
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and not intrinsic to the algorithm. If we are interested in a Z2 symmetric system, we
can impose the symmetry at each step of TNR in order to avoid this effect.

In contrast, the 𝐿 scaling observed for 256 < 𝐿 < 104 is more intrinsic. The most
relevant perturbation allowed under the Z2 symmetry to the critical Ising fixed-point
is the thermal operator. Thus, we expect that the finite bond dimension effect can be
mimicked by the thermal perturbation 𝜖 to the fixed-point Hamiltonian 𝐻∗

CFT. If this
is the case, the effective coefficient 𝑔𝜖 grows proportionally to 𝐿 as the system size 𝐿
is increased, because the thermal operator 𝜖 has the scaling dimension 1. According
to Eq. (2.14), this will lead to a correction proportional to 𝐿 in the rescaled energy
level 𝛿𝑥𝜎 (𝐿). This is indeed supported by the numerical result shown in Fig. 2.4.

In general, the finite-𝐷 effect in TNR would be described in terms of the emergence
of relevant perturbation(s) to the fixed-point Hamiltonian, which induces the finite
correlation length 𝜉 (𝐷). In addition to the emergence of the relevant operator 𝜖 in
the critical Ising model discussed above, a similar emergence of the relevant operator
is observed in the critical three-state Potts model, as demonstrated in Appendix A.2.

Scaling of the emergent correlation length
Now let us demonstrate that the finite correlation length 𝜉 (𝐷) induced by the finite

bond dimension 𝐷 in TNR obeys the same scaling (2.21) and (2.22) as in the MPS,
as suggested in Refs. [26, 31].

In Fig. 2.5, we demonstrate the scaling of the correlation length induced by the
finite bond dimension in TNR of the critical Ising and the three-state Potts models.
In Fig. 2.5(a), we plot the shift 𝛿𝑥𝜎 in the Ising model obtained by the TNR of
the Ising model at the critical point, which was also studied in Fig. 2.4, with the
several different bond dimensions 𝐷 = 4, . . . , 28. Here, we rescaled the vertical
axis as 𝐿2𝛿𝑥𝜎 so that the constant behavior is observed for system size smaller
than the correlation length, where the leading irrelevant perturbation (which causes
𝛿𝑥𝜎 ∝ 𝐿−2) is dominant. The deviation from the constant at larger system sizes
𝐿 can be attributed to the emergent relevant perturbation 𝜖 induced by the finite
bond dimension 𝐷, as discussed in the previous subsection. This is confirmed
by the 𝐿3 scaling (𝐿2 times 𝛿𝑥𝜎 ∝ 𝑔𝜖 ∝ 𝐿). Most importantly, the horizontal
axis is the rescaled system size 𝐿/𝜉 (𝐷) using the hypothesized correlation length
𝜉 (𝐷) = 𝑎𝐷𝜅 given by Eqs. (2.21) and (2.22). The collapse of the data for different
bond dimensions strongly supports our hypothesis on the correlation length. Note
that we roughly fit the prefactor 𝑎 so that the cross-over occurs at 𝐿 = 𝜉 (𝐷).
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Figure 2.5: (𝑎) The scaling of the shift 𝛿𝑥𝜎 in TNR of the Ising model at the
critical point, for various bond dimensions 𝐷 = 4, . . . , 28. The vertical axis is
scaled as 𝐿2𝛿𝑥𝜎 so that it is constant when 𝐿 ≪ 𝜉 (𝐷). When 𝐿 ≪ 𝜉 (𝐷), the
shift is dominated by the emergent relevant perturbation 𝜖 ; this is confirmed by the
scaling 𝐿2𝑔𝜖 ∝ 𝐿3. The horizontal axis is scaled as 𝐿/𝜉 (𝐷), where the correlation
length 𝜉 (𝐷) is hypothesized as in Eqs. (2.21) and (2.22). The collapse of the
data for different bond dimensions is strong evidence of the hypothesized scaling
of the correlation length 𝜉 (𝐷). The blue dotted line indicates 𝐿/𝜉 (𝐷) = 1. We
set 𝜉 (𝐷) = 2.0𝐷𝜅 so that 𝐿/𝜉 (𝐷) = 1 becomes the crossover scale between the
finite-size scaling regime and the finite-𝐷 scaling regime. (𝑏) Similar scaling
analysis of the shift 𝛿𝑥𝜖 in TNR of the three-state Potts model at the critical point,
for various bond dimensions 𝐷 = 16, . . . , 40 with 𝜉 (𝐷) = 0.067𝐷𝜅. The scaled
shift 𝐿0.8𝛿𝑥𝜖 behaves as a constant in the finite-size scaling regime 𝐿/𝜉 (𝐷) < 1,
whereas it scales as 𝐿3.2 in the finite-𝐷 scaling regime 𝐿/𝜉 (𝐷) > 1, as expected
from the CFT analysis (see Appendix A.2 for details). The data for different
bond dimensions collapse again, giving compelling evidence for the scaling of the
correlation length (2.21) and (2.22)

In order to confirm the finite-𝐷 scaling of the correlation length and its universality,
we have also studied the three-state Potts model at the critical point. As an example,
in Fig. 2.5(b), we plot the shift of the rescaled energy level corresponding to the
energy operator 𝜖 in the three-state Potts model. For this shift 𝛿𝑥𝜖 , the contribution
from the leading irrelevant operator is ∼ 𝐿−4/5, and the dominant contribution from
the emergent relevant perturbation 𝜖 is expected to be proportional to 𝑔𝜖2 ∝ 𝐿12/5.
(See Appendix A.2 for details). We rescaled the vertical axis as 𝐿0.8𝛿𝜖 so that it is
constant in the finite-size scaling regime 𝐿 < 𝜉 (𝐷). The horizontal axis is again the
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rescaled system size 𝐿/𝜉 (𝐷), with the correlation length 𝜉 (𝐷) defined in Eqs. (2.21)
and (2.22) with the central charge 𝑐 = 4/5 for the three-state Potts model. The data
for different bond dimensions again show a collapse, providing compelling evidence
for our hypothesis on the correlation length scaling. For 𝐿/𝜉 (𝐷) > 1, the data fits
well the expected behavior 𝐿0.8 × 𝑔𝜖2 ∝ 𝐿0.8 × 𝐿2.4 = 𝐿3.2.
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C h a p t e r 3

TENSOR NETWORK REPRESENTATION OF FIXED-POINT
TENSORS

TNR, while a powerful tool in the study of critical phenomena, encounters lim-
itations when dealing with systems at criticality. A key challenge arises from the
emergence of finite correlation lengths, which inherently restrict the effectiveness
of TNR in capturing the true nature of the critical point. This limitation is com-
pounded by the practical inability to simulate an infinite bond dimension (𝐷 = ∞),
effectively creating a sort of ’no-go theorem’ for TNR in accurately obtaining the
true fixed-point tensor.

Fixed-point tensors, being invariant under RG transformations, are expected to
exhibit certain distinct properties. Recognizing the constraints of TNR at criticality,
we propose in this chapter an analytical approach aimed at uncovering the tensor
elements of these fixed-point tensors. This method is designed to complement the
RG techniques employed in tensor networks.

Our approach leverages analytical methods to probe deeper into the structure of
fixed-point tensors, enabling us to bypass some of the limitations posed by finite
correlation lengths and finite bond dimensions. By analytically determining the
tensor elements of fixed-point tensors, we aim to provide a more comprehensive
understanding of the behavior of systems at criticality. This method not only
enhances our ability to study critical phenomena using tensor networks but also
contributes to a more nuanced understanding of the universal properties associated
with RG fixed points.

3.1 Fixed-point tensor
To simulate two-dimensional statistical models, we use the tensor network meth-

ods, where the local Boltzmann weight is represented as a four-legged tensor 𝑇 (0) .
We obtain the transfer matrix in the 𝑦-direction if we contract 𝐿 copies of the four-leg
tensors along a circle in the 𝑥-direction; we obtain the partition function 𝑍 (𝐿,𝑇 (0))
if we contract 𝐿 × 𝐿 copies along the torus in the 𝑥, 𝑦-directions. In practical sim-
ulations, the exact contraction of two-dimensional tensor networks is notoriously
challenging, often proving to be exponentially hard. To address this, we consider a
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tensor RG map that effectively coarse-grains the local tensors, as illustrated below:

In the initial RG step, we apply the RG map to the original Boltzmann tensor, denoted
as 𝑇 (0) , to yield 𝑇 (1) . Subsequently, 𝑇 (1) is used to generate the next tensor in the
sequence. This RG map is designed to ensure that the renormalized tensor remains a
close approximation of the original tensor group, while selectively discarding local
entanglement. While the specifics of the technical implementation vary depending
on the chosen algorithms, it is established that 𝑇 (𝑛) converges to a universal tensor,
𝑇∗, at critical points. This universally convergent tensor, 𝑇∗, is referred to as the FP
tensor. Its significance lies in its close association with the RG fixed-point, reflecting
the underlying principles of scale invariance and universality in the renormalization
group theory.

If the original tensor 𝑇 (0) has D4 symmetry(reflection and 𝜋/2 rotation), 𝑇∗ also
respects it. This allows the decomposition of the FP tensor into a pair of two identical
three-leg tensors 𝑆∗:

(3.1)

The FP tensor 𝑇∗ has gauge degrees of freedom that change the basis of each leg.
The insertion of the gauge transformation (unitary operators) does not change the
spectral property of the FP tensor. In the following, we fix the gauge so that each
index of the FP tensor is labeled by the eigenstates of the Hamiltonian 𝐿0 + 𝐿̄0 on a
cylinder, where 𝐿𝑛 (𝐿̄𝑛) are the standard generators of the left-moving (right-moving)
Virasoro algebras. By the state-operator correspondence, we can label these states
by a set of operators 𝜙𝛼, among which we will find the identity operator 𝜙1 with the
lowest scaling dimension 1. In tensor-network representations, the projector to this

1Note that the label 𝛼 refers to both the primaries and the descendants of the Virasoro algebra.
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basis can be found by diagonalizing the transfer matrix as follows [7]:

(3.2)

In the following, we choose the states 𝛼, 𝛽, . . . to be primary operators.

3.2 Main results
Let us now state the main results of this chapter. First, the three-leg tensor 𝑆∗

is proportional to the three-point functions of the FP CFT on the complex plane
denoted as pl:

𝑆∗
𝛼𝛽𝛾

𝑆∗111
= ⟨𝜙𝛼 (−𝑥𝑆)𝜙𝛽 (𝑖𝑥𝑆)𝜙𝛾 (0)⟩pl. (3.3)

Second, the four-leg FP tensor determines the four-point functions of the FP CFT as

𝑇∗
𝛼𝛽𝛾𝛿

𝑇∗
1111

= ⟨𝜙𝛼 (−𝑥𝑇 )𝜙𝛽 (𝑖𝑥𝑇 )𝜙𝛾 (𝑥𝑇 )𝜙𝛿 (−𝑖𝑥𝑇 )⟩pl. (3.4)

These equalities hold when we choose the values 𝑥𝑆 = 𝑒𝜋/4 and 𝑥𝑇 = 𝑒𝜋/2/2. 𝑥𝑆 and
𝑥𝑇 are just numbers. Do not confuse them with scaling dimensions.

We can now reproduce the full defining data for the FP CFT. Recall that we can
extract the scaling dimensions 𝑥𝛼 operators from Eq. (3.2). The remaining data is
the OPE coefficients 𝐶𝛼𝛽𝛾 of the operators 𝜙𝛼, which can be extracted by applying
a conformal transformation to Eq. (3.3):

𝑆∗
𝛼𝛽𝛾

𝑆∗111
=

𝐶𝛼𝛽𝛾

𝑥
𝑥𝛽+𝑥𝛾−𝑥𝛼
𝑆

𝑥
𝑥𝛾+𝑥𝛼−𝑥𝛽
𝑆

(
√

2𝑥𝑆)𝑥𝛼+𝑥𝛽−𝑥𝛾
,

=
2𝑥𝛾𝐶𝛼𝛽𝛾

(
√

2𝑥𝑆)𝑥𝛼+𝑥𝛽+𝑥𝛾
. (3.5)

Equation (3.1) represents the equivalence of two different decompositions (𝑠- and
𝑡-channels) of the four-point function into a pair of three-point functions, i.e. the
celebrated crossing relation of the CFT.
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To better understand Eqs. (3.3-3.4), we apply conformal transformations to the
two equations to obtain

𝑆∗
𝛼𝛽𝛾

𝑆∗111
= 𝑒−

𝜋
4 (𝑥𝛼+𝑥𝛽+𝑥𝛾) ⟨𝜙𝛼 (−1)𝜙𝛽 (𝑖)𝜙𝛾 (0)⟩pl, (3.6)

𝑇∗
𝛼𝛽𝛾𝛿

𝑇∗
1111

=

(
𝑒

𝜋
2

2

)−𝑥tot

⟨𝜙𝛼 (−1)𝜙𝛽 (𝑖)𝜙𝛾 (1)𝜙𝛿 (−𝑖)⟩pl, (3.7)

where 𝑥tot ≡ 𝑥𝛼 + 𝑥𝛽 + 𝑥𝛾 + 𝑥𝛿.

Equations (3.6-3.7) naturally arise from the following arguments. Once we fix the
basis for the FP tensor, each index corresponds to the states of CFT. Thus, the tensor
elements of the FP tensor are the coefficients of each basis:

𝑇∗ = 𝑇∗
𝛼𝛽𝛾𝛿 |𝜙𝛼⟩|𝜙𝛽⟩|𝜙𝛾⟩|𝜙𝛿⟩ (3.8)

On the other hand, the FP tensor itself is a lattice representation of the identity
operator 1. In Ref. [18, 32, 33], they confirmed that local scale-transformation could
be realized using the FP tensors.

The scale transformation of a four-leg tensor, comprising the FP tensor (colored blue)
and isometry (colored orange), results in primary operators emerging as eigenstates.
Notably, the scale-invariant FP tensor corresponds to 𝑥𝛼 = 0. This specific cor-
respondence is significant, equating the FP tensor to the identity operator 2. This
observation leads us to a conceptualization where the elements of the tensor can be
expressed as an overlap between the four-leg identity operator and four one-leg pri-
mary operators as 𝑇∗

𝛼𝛽𝛾𝛿
= ⟨𝜙𝛼𝜙𝛽𝜙𝛾𝜙𝛿 |𝜙4−𝑙𝑒𝑔

1 ⟩. The same argument can be applied
to the three-leg FP tensor 𝑆∗. To calculate these values, we employ a technique
similar to the one described in the referenced literature, specifically in Ref. [21, 34].

First, utilizing state-operator correspondence, the normalized wave function of the
first index of 𝑆∗, for instance, is created by inserting 𝜙𝛼 in the future infinity of the

2unitary CFTs have ground states corresponding to the identity operator
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cylinder as follows:

|𝜙1⟩ =
(
2𝜋
𝐿

)−𝑥𝛼
lim
𝑧→∞

𝑒2𝜋𝑧𝑥𝛼/𝐿𝜙𝛼 (∞)|𝐼cyl⟩,

where |𝐼cyl⟩ represents the ground state corresponding to the identity operator.
Subsequently, the FP tensors 𝑆∗ and 𝑇∗ can be expressed by the path integral on the
manifolds Σ𝑆 and Σ𝑇 , respectively, as illustrated in Fig. 3.1. Then, the FP-tensor
elements are

𝑆∗
𝛼𝛽𝛾

𝑆∗111
= ⟨𝜙𝛼 (∞)𝜙𝛽 (𝑖∞)𝜙𝛾 (−(1 + 𝑖)∞)⟩Σ𝑆

, (3.9)

𝑇∗
𝛼𝛽𝛾𝛿

𝑇∗
1111

= ⟨𝜙𝛼 (−∞)𝜙𝛽 (𝑖∞)𝜙𝛾 (∞)𝜙𝛿 (−𝑖∞)⟩Σ𝑇
. (3.10)

Σ𝑆 andΣ𝑇 can be mapped to the complex plane𝑤 by using (generalized) Mandelstam
mapping [24, 35],

𝑧𝑆 =
𝐿

2𝜋
[− ln(𝑤 − 𝑖) − 𝑖 ln(𝑤 + 1) + (1 + 𝑖) ln𝑤], (3.11)

𝑧𝑇 =
𝐿

2𝜋

[
ln

(
𝑤 + 𝑖
𝑤 − 𝑖

)
+ 𝑖 ln

(
𝑤 − 1
𝑤 + 1

)]
. (3.12)

Each operator in the 𝑧-coordinate transforms accordingly as

𝑆∗
𝛼𝛽𝛾

𝑆∗111
= ⟨𝜙𝛼 (−1)𝜙𝛽 (𝑖)𝜙𝛾 (0)⟩pl

∏
𝑛∈(𝛼,𝛽,𝛾)

|𝐽𝑛 |𝑥𝑛 ,

𝑇∗
𝛼𝛽𝛾𝛿

𝑇∗
1111

= ⟨𝜙𝛼 (−1)𝜙𝛽 (𝑖)𝜙𝛾 (1)𝜙𝛿 (−𝑖)⟩pl
∏

𝑛∈(𝛼,𝛽,𝛾,𝛿)
|𝐽𝑛 |𝑥𝑛 ,

where |𝐽𝑛 | = |
(

2𝜋
𝐿

)−1
lim𝑧→𝜁∞ 𝑒2𝜋𝑧𝜁∗/(𝐿 |𝜁 |) |𝑤′(𝑧) |, and 𝜁∞ is the coordinate of the

index in the original manifold. The resulting |𝐽𝑛 | are 𝑒−𝜋/4 and 2𝑒−𝜋/2, respectively,
being consistent with Eqs. (3.6-3.7). Detailed calculations are presented in the
appendix.

3.3 Numerical fixed point tensor
Let us provide numerical confirmations of our main results using Levin’s tensor

renormalization group (TRG) [6] and Evenbly’s TNR [10]. TRG and TNR are
numerical techniques that calculate effective 𝐿 × 𝐿 tensor networks. In our study,
our interest lies in computing those of large system sizes to obtain a tensor that is
as close as possible to the FP tensor. However, performing an exact contraction is
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Figure 3.1: The path-integral representation of the tensor elements (𝑎) 𝑆∗
𝛼𝛽𝛾

and
(𝑏) 𝑇∗

𝛼𝛽𝛾𝛿
. The fixed-point tensor lives at the center of cylinders, and surrounding

cylinders are bra vectors of primary fields. Since the FP tensor corresponds to
the identity operator, “insertion of no operator" is illustrated as empty space. This
identity operator at the origin in 𝑧 coordinate will be mapped to the infinity in 𝑤.

exponentially difficult, prompting us to focus on extracting low-lying spectral prop-
erties. TRG/TNR seeks to circumvent this issue by employing the principles of the
renormalization group theory. Each coarse-graining step entails decompositions and
recombinations. Truncation, parameterized by the bond dimension 𝐷, is performed
to maintain the tractability of numerical computation. However, it is important to
note that this scheme is considered exact when 𝐷 = ∞, and thus, employing larger
𝐷 improves the numerical accuracy. Additionally, we impose special 𝐷4 symmetry
in TRG. The details can be found in the appendix. It is crucial to acknowledge
that the TRG method is known to exhibit instabilities, primarily due to its inherent
limitations in eliminating certain types of local entanglement. In contrast, TNR,
which includes a local entanglement filtering process, typically demonstrates supe-
rior performance in extracting infra-red information. This enhanced capability of
TNR is attributed to its more effective handling of local entanglement, making it a
more robust approach for studying systems at criticality.

3.4 Tests on critical lattice models
Let us first test the value 𝑥𝑆 = 𝑒𝜋/4 in Eq. (3.6), by computing 𝑥𝑆 from the critical

Ising and three-state Potts models. Given Eq. (3.6), we can numerically compute
the OPE coefficients 𝐶𝛼𝛽𝛾 from Eq. (3.5). We define 𝑥𝑆 (𝐿) by solving Eq. (3.5) to
be

𝑥𝑆 (𝐿) ≡
1
√

2

( 2𝑥𝛾𝐶𝛼𝛽𝛾
𝑆𝛼𝛽𝛾 (𝐿)

)1/(𝑥𝛼+𝑥𝛽+𝑥𝛾)
. (3.13)

Each model has a primary operator 𝜖 , called the energy and the thermal operator,
respectively. Since 𝐶𝜖𝜖1 = 1, 𝑥𝑆 (𝐿) can be computed from the finite-size three-leg
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Figure 3.2: Estimation of 𝑥𝑆 (𝐿) from Levin-TRG(𝐷 = 96) and Evenbly-TNR(𝐷 =

40). The values of 𝑥(𝐿) from the Ising and three-state Potts model converge to the
theoretical value 𝑥𝑆 = 𝑒𝜋/4 denoted by a black dotted line. We plot 𝑥𝑆 = 2.23035
obtained from Loop-TNR [10] on the critical 9-state clock model [19] with a lime
dashed line. The three-state Potts model exhibits a deviation for 𝐿 > 100 because
simulating systems with higher central charges involves larger numerical errors.

tensor 𝑆𝜖𝜖1(𝐿).

Figure 3.2 shows the value of 𝑥𝑆 (𝐿) obtained from TRG and TNR at the bond
dimension 𝐷 = 96 and 𝐷 = 40, respectively. The numerically derived 𝑥𝑆 (𝐿)’s for
both models converge to the theoretical value of 𝑒𝜋/4. The noticeable increase in
amplitude for the three-state Potts model by TRG at 𝐿 > 102 is attributed to the
effect of the finite bond dimension and the remaining local entanglement. It is worth
noting that our value for 𝑥𝑆 deviates slightly from the value 𝑥𝑆 = 2.23035 3 obtained
in a previous study on the 9-state clock model [19]. We speculate that this minor
deviation is due to the finite bond-dimension effect because higher central charges
lead to more pronounced numerical errors [36]. For the system size 𝐿 = 2048 and
bond dimension 𝐷 = 96, we ascertain 𝑥𝑆 = 2.193257 for the Ising model, a value
remarkably close to 𝑒𝜋/4 = 2.193280. Once we are certain of the value 𝑥𝑆 = 𝑒𝜋/4,
we can verify Eq. (3.6) for all the OPE coefficients, which are computed from the

3Their paper showed that the three-leg FP tensor 𝑆∗ had the same structure as a three-point
function by numerical experiments. In this process, they treat 𝑥𝑆 as a fitting parameter to reproduce
known OPE coefficients. Our results show that they are indeed three-point functions and 𝑥𝑆 is a
universal number and not a fitting parameter.
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Figure 3.3: The OPE coefficients of the critical Ising model evaluated by setting
𝑥𝑆 = 𝑒𝜋/4. The black dotted lines denote the theoretical values 0, 0.5, and 1. The
data points, denoted by filled circles "◦" and crosses "+," are obtained from Levin-
TRG(𝐷 = 96) and Evenbly-TNR(𝐷 = 40), respectively. Relatively large finite-size
effects have universal scaling as tested in Sec. A.3.

three-leg tensor 𝑆 as

𝐶𝛼𝛽𝛾 (𝐿) = (
√

2 𝑒𝜋/4)𝑥𝛼+𝑥𝛽+𝑥𝛾2−𝑥𝛾𝑆𝛼𝛽𝛾 (𝐿). (3.14)

The results for the critical Ising model are exhibited in Fig. 3.3. The obtained
OPE coefficients are consistent with our theory with the finite-size effects of ex-
pected scaling. The finite-size effect originates from the twist operator at the branch
points [21, 34], whose scaling is universal. The detailed analysis is discussed in
the appendix. The same plot for the critical three-state Potts model is shown in the
supplemental information in the appendix. While it has less accuracy due to the
stronger finite bond dimension effect for higher central charges, the result is still
consistent with the expected OPE coefficients.

We next computed four-point tensors 𝑇𝛼𝛽𝛾𝛿 and compared with the theoretical
values from Eq. (3.7), where the explicit forms of the four-point functions of the
critical Ising model are listed in the supplemental information in the appendix. The
result is consistent up to two digits for most tensor elements, as shown in Table 3.1.
The exceptions are𝑇𝜎𝜎𝜎𝜎 and𝑇𝜎𝜎11, whose numerical values deviate approximately
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Table 3.1: The comparison of the numerically-obtained fixed-point tensor 𝑇𝛼𝛽𝛾𝛿 at
𝐿 = 2048 and the exact four-point function ⟨𝜙𝛼 (−𝑥𝑇 )𝜙𝛽 (𝑖𝑥𝑇 )𝜙𝛾 (𝑥𝑇 )𝜙𝛿 (−𝑖𝑥𝑇 )⟩pl of
the Ising model with 𝑥𝑇 = 𝑒𝜋/2/2.

𝛼𝛽𝛾𝛿 𝑇𝛼𝛽𝛾𝛿 (𝐿 = 2048) ⟨𝜙𝛼𝜙𝛽𝜙𝛾𝜙𝛿⟩
1111 1 1
𝜎𝜎𝜎𝜎 0.610 0.645
𝜎𝜎𝜖𝜖 0.0714 0.0716
𝜎𝜖𝜎𝜖 0.000 0
𝜖𝜖𝜖𝜖 0.0168 0.0168
𝜎𝜎𝜖1 0.0618 0.0765
𝜎𝜖𝜎1 0.133 0.140
𝜎𝜎𝜎1 0.000 0
𝜖𝜖𝜖1 0.001 0
𝜎𝜎11 0.708 0.736
𝜎1𝜎1 0.639 0.675
𝜖𝜖11 0.0863 0.0864
𝜖1𝜖1 0.0439 0.0432
𝜖𝜎11 0.000 0

5% from the theoretical values. As for 𝑇𝜎𝜎𝜖1, the deviation is almost 24% 4. This
discrepancy, however, can be attributed to finite-size effects and becomes negligible
for infinite system sizes. To illustrate this, we define the finite-size deviation as (do
not confuse with temperature)

𝛿𝑇𝛼𝛽𝛾𝛿 ≡ 𝑇∗
𝛼𝛽𝛾𝛿 − 𝑇𝛼𝛽𝛾𝛿 (𝐿).

Figure 3.4 presents the values of 𝛿𝑇𝜎𝜎𝜎𝜎 (𝐿), 𝛿𝑇𝜎𝜎𝜖1(𝐿), and 𝛿𝑇𝜎𝜎11(𝐿) obtained
from TRG calculations. A clear power-law decay with respect to the system size is
observed, supporting the claim that the large deviations for those elements are finite-
size effects. However, it is worth mentioning that the exponent closely approximates
∼ 𝐿−1/3, hinting at the existence of an underlying theory that might account for this.

4The TNR scheme has a similar performance at the same length-scale as seen in Fig. 3.4.
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Figure 3.4: The finite-size effect of the fixed point tensor 𝛿𝑇𝛼𝛽𝛾𝛿 ≡ ⟨𝜙𝛼𝜙 𝑗 𝛽𝜙𝛾𝜙𝛿⟩ −
𝑇𝛼𝛽𝛾𝛿 (𝐿) from Levin-TRG(𝐷 = 96, red) and Evenbly-TNR(𝐷 = 40, blue). We plot
𝛿𝑇𝛼𝛽𝛾𝛿 of𝜎𝜎𝜎𝜎(“+"), 𝜎𝜎𝜖1(“★"), and𝜎𝜎11(“×") with different colors depending
on the algorithm. The difference converges to zero for 𝐿 → ∞ with the power-law
∼ 𝐿−1/3.
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C h a p t e r 4

CONCLUSION AND DISCUSSION

In the first part of Chapter 2, we discussed a method for computing the coupling
constants using renormalized tensors based on the finite-size scaling theory of CFT.
By plotting the resulting values at each scale, we were able to visualize the RG flow,
and we confirmed that the theoretical RG flows, as shown in Fig. 2.3, are consistent
with the Ising models. Our methodology has undergone further validation through
its application to the three-state Potts model and the XY model, as detailed in the
appendix and in Ref.[26], respectively. In the case of the XY model, particular care
is required in the perturbative calculations due to the marginal nature of the running
coupling constants under consideration. Despite these complexities, we successfully
demonstrate that the RG flow in the XY model aligns with the Kosterlitz RG flow[37],
as confirmed by our inclusion of third-order perturbative effects. This finding is
depicted in Fig. 4.1, offering a visual representation of the Kosterlitz RG flow in the
context of the XY model.

Figure 4.1: The RG flow of the classical XY model in two dimensions stands as
a quintessential example of a topological phase transition. This particular type
of RG flow is commonly referred to as the Kosterlitz RG flow. The right panel is
numerically obtained RG flow in a similar manner. However, a key distinction lies in
the consideration of up to third-order perturbations in our computational approach.
The deviation in the smaller system size is due to the irrelevant perturbations.
Further details can be found in Ref. [26].
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Our method has the advantage of being able to extract both ultraviolet and infrared
information, making it a valuable tool for investigating gapped and crossover sys-
tems. We applied this idea to reveal the asymptotic freedom of the Heisenberg and
exotic cross-over behavior of RP2 models in Ref. [38].

In the second part of the chapter, applying the methodology developed in the
first part, we explored the impact of finite bond-dimension 𝐷 on the RG flow.
The finiteness of the bond-dimension results in a finite correlation length 𝜉 (𝐷), or
equivalently in a non-zero gap in the energy spectrum of the corresponding one-
dimensional quantum system. We find that this gap formation can be attributed
to the emergence of a relevant perturbation enforced by the finite bond dimension.
This is demonstrated by the RG flow of the emergent relevant coupling.

The finite-size scaling of TNR shows a crossover at 𝐿 ∼ 𝜉 (𝐷), above which the
system is governed by the finite correlation length. The correlation length 𝜉 (𝐷)
induced by the finite bond dimension in TNR shows the same scaling (2.21), (2.22)
as the correlation length of MPS. While such scaling in TNR was suggested earlier
in Refs. [26], in this thesis, we presented more convincing evidence.

Although we do not have a mathematical proof for the scaling of 𝜉 (𝐷) in TNR
at this point, it may be natural from the following point of view. Besides the
construction of the transfer matrix by contracting horizontal legs, the renormalized
tensor obtained in TNR can give the corner transfer matrix by contracting the upper
and left legs. The same finite-𝐷 scaling (2.21), (2.22) as in MPS was observed
in corner transfer matrix renormalization group (CTMRG) [39–41]. Moreover, the
entanglement spectrum for the half-bipartition of the system of length 2𝐿 can be
related to a contraction of four renormalized tensors of linear size 𝐿 [42], as shown
in Fig. 4.2. These relations are suggestive of the identical scaling of 𝜉 (𝐷) in MPS,
CTMRG, and TNR as we have observed.

Our study highlights the importance of considering the impact of the finite bond
dimension in the TNR-type approach. In particular, a direct study of the thermody-
namic limit with TNR would be prone to errors due to the finite correlation length
𝜉 (𝐷) imposed by the finite bond dimension. As a resolution of this problem, we
have demonstrated that accurate data for the thermodynamic limit can be extracted
by finite-size scaling of TNR spectra obtained for system sizes smaller than 𝜉 (𝐷),
combined with conformal field theory. Even with this limitation, the tractable sys-
tem size is greatly increased from ∼ log𝐷 with exact diagonalization to 𝜉 (𝐷) ∼ 𝐷𝜅

in TNR.
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Figure 4.2: (Left panel) A schematic picture of the reduced density matrix 𝜌𝐴
for a bipartition of the system in the path integral picture. The uncontracted legs
correspond to the indices of the reduced density matrix. (Right panel) Each of the
four quadrants of the space-time in the left panel may be replaced by the renormalized
tensor in TNR with appropriate boundary conditions.

Meanwhile, the unattainability of true critical fixed-point tensors in numerical
simulations does not prohibit their calculation by analytical approach. In Chapter
3, we have successfully computed explicit elements of the critical fixed-point tensor
by field theory, which we have identified as the four-point function in CFT. This
achievement enables us to directly extract the OPE coefficients from these tensor
elements. When combined with the scaling dimensions derived from the transfer
matrix, this approach allows us to determine a complete set of CFT data for any
critical unitary lattice model.

One of the key strengths of our method for extracting OPE coefficients is its
simplicity and effective finite-size scaling properties. These characteristics make our
approach particularly useful for extrapolating other, more complex OPE coefficients.
As an example of this method’s application, we have computed the OPE coefficients
for the three-state Potts model, detailed in Sec. A.3.

Determining the infrared CFTs for lattice models stands as a cornerstone challenge
in theoretical physics. This problem has garnered widespread attention across var-
ious domains of physics, including high energy physics, condensed matter physics,
and statistical physics, due to its fundamental nature and broad implications.

In our research, we have introduced a novel solution to this long-standing is-
sue, employing a synergistic blend of analytical and numerical techniques. This
approach not only addresses the immediate problem at hand but also opens new
avenues for exploration and inquiry in the realms of formal conformal field theories
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and numerical tensor networks. Our work, therefore, not only contributes to the
resolution of a decade-old problem but also poses many intriguing questions for
future research, potentially leading to significant advancements in both theoretical
and applied physics

Looking to the future, exploring the tensor elements corresponding to descendants
within the CFT framework presents an exciting avenue for further research. This
exploration could deepen our understanding of the intricate structures within lattice
models. In fact, following our work, Ref. [43] has examined descendants in a similar
context, indicating the growing interest and potential in this area of study.

Ultimately, our approach, which combines the exact treatment of RG and fixed-
point tensors in tensor networks, could significantly contribute to a more profound
understanding of universality in lattice models. By leveraging these advanced
methods, we open up new possibilities for exploring and elucidating the complex
and fascinating behaviors inherent in critical systems.
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A p p e n d i x A

APPENDIX

A.1 Perturbation theory on the finite-size spectrum
In the realm of effective field theory, particularly for lattice models or condensed

matter systems, the theory often encompasses various perturbations to the Conformal
Field Theory (CFT). Let us consider the effective Hamiltonian as follows:

𝐻̂ = 𝐻̂∗ +
∑︁
𝑗

𝑔 𝑗

∫
𝑑𝑣Φ̂ 𝑗 (𝑣). (A.1)

In this formulation, 𝐻∗ represents the Hamiltonian of the unperturbed CFT, and
the additional terms correspond to various perturbations, each characterized by a
coupling constant 𝑔 𝑗 and a field operator Φ̂ 𝑗 (𝑣). When all these perturbations are
deemed irrelevant in the RG context, the behavior of the system asymptotically
approaches that described by the CFT in the large-distance or low-energy limit.
However, it is crucial to note that these irrelevant perturbations can still significantly
influence the finite-size spectrum of the system. This aspect was extensively studied
by Cardy, who delved into the effects of such perturbations on the finite-size spec-
trum [14]. His work provides a deeper understanding of how minor deviations from
the idealized CFT can have measurable impacts in finite systems.

Now, we apply the standard Rayleigh-Schrödinger perturbation theory to our gen-
eral Hamiltonian framework:

H = H0 +𝑉, (A.2)

where 𝑉 is treated as a perturbation. The unperturbed eigenstates are defined as

H0 |𝑛(0)⟩ = 𝐸 (0)
𝑛 |𝑛(0)⟩, (A.3)

and the perturbative expansion of the energy eigenvalue is given by

𝐸𝑛 = 𝐸
(0)
𝑛 + 𝜖𝐸 (1)

𝑛 + 𝜖2𝐸
(2)
𝑛 , (A.4)

where the first-order correction is

𝐸
(1)
𝑛 = ⟨𝑛(0) |𝑉 |𝑛(0)⟩. (A.5)
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In this context, the unperturbed eigenstate corresponds to a primary state of CFT:

|𝑛(0)⟩ = |Φ𝑛⟩, (A.6)

and the perturbation 𝑉 is represented as

𝑉 =
∑︁
𝑗

𝑔 𝑗

∫
𝑑𝑣Φ̂ 𝑗 (𝑣), (A.7)

Using conformal mapping for the three-point correlation function, we obtain

⟨Φ𝑖 |Φ̂ 𝑗 (𝑣) |Φ𝑘⟩ = 𝐶𝑖 𝑗 𝑘
(
2𝜋
𝐿

)𝑥 𝑗
𝑒2𝜋𝑖(𝑠𝑖−𝑠𝑘)𝑣/𝐿 . (A.8)

Thus, for the matrix element of 𝑉 , we have

⟨𝑙 (0) |𝑉 |𝑛(0)⟩ =
∑︁
𝑗

𝑔 𝑗

∫ 𝐿

0
𝑑𝑣⟨Φ𝑙 |Φ̂ 𝑗 (𝑣) |Φ𝑛⟩ (A.9)

= 𝛿𝑠𝑙 , 𝑠𝑛

∑︁
𝑗

𝑔 𝑗𝐶𝑛 𝑗𝑙𝐿

(
2𝜋
𝐿

)𝑥 𝑗
(A.10)

= 𝛿𝑠𝑙 ,𝑠𝑛2𝜋
∑︁
𝑗

𝑔 𝑗𝐶𝑛 𝑗𝑙

(
2𝜋
𝐿

)𝑥 𝑗−1
. (A.11)

Hence, for 𝑙 = 𝑛, the first-order energy correction is

𝐸
(1)
𝑛 = 2𝜋

∑︁
𝑗

𝑔 𝑗𝐶𝑛𝑛 𝑗

(
2𝜋
𝐿

)𝑥 𝑗−1
. (A.12)

Therefore, to the first order in perturbation theory, the energy difference relative
to the ground state is

𝐸𝑛 − 𝐸0 =
2𝜋
𝐿

(
𝑥𝑛 + 2𝜋

∑︁
𝑗

𝑔 𝑗𝐶𝑛𝑛 𝑗

(
2𝜋
𝐿

)𝑥 𝑗−2
)
. (A.13)

When the perturbations are irrelevant (𝑥 𝑗 > 2), they give subleading corrections
to the CFT scaling (A.13). In contrast, relevant perturbations with 𝑥 𝑗 < 2 eventu-
ally dominates the CFT scaling for a sufficiently large system size 𝐿, signalling a
breakdown of the perturbation theory. Nevertheless, the perturbation theory can be
useful for small perturbations (at the microscopic scale) when the system size is not
very large. When 𝑥 𝑗 = 2, the perturbation is marginal.

The formula (A.13) may be interpreted in an alternative way. We can apply the
scale transformation so that the length of the system becomes 2𝜋. The scaled gap
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Symbol Dimension Meaning
𝐼 0 identity
𝜖 2

5 thermal op.
𝜎 1

15 spin
𝑋 7

5
𝑌 3
𝑍 2

3

Table A.1: A set of primary operators of the three-state Potts model.

Figure A.1: The size dependence of the (a)𝛿𝑥𝜎 and (b)𝛿𝑥𝜖 at 𝑇 = 0.999995𝑇𝑐 and
𝑇 = 1.000005𝑇𝑐. The pink and green dotted lines denote 𝐿−0.8, (a)𝐿1.2, and (b)𝐿2.4

fittings respectively. For the low-temperature phase, the sign of 𝛿𝑥𝜎 is negative at
𝐿 > 100. The dip on the left panel around 𝐿 ∼ 102 corresponds to the zero point
of Eq. (A.17). (b) The finite-size effect to the 𝑥𝜖 suffers less from 𝑇2

cyl + 𝑇
2
cyl in

amplitude. The scaling of Eq. (A.18) is clearly observed.

is 𝐿 (𝐸𝑛 − 𝐸0)/(2𝜋). Applying the perturbation theory to the system on the ring of
radius 1,

𝐿

2𝜋
(𝐸𝑛 − 𝐸0) = 𝑥𝑛 + 2𝜋

∑︁
𝑗

𝑔 𝑗 (𝐿)𝐶𝑛𝑛 𝑗 . (A.14)

Using the scale-dependent coupling constant

𝑔 𝑗 (𝐿) =
(
2𝜋
𝐿

)𝑥 𝑗−2
𝑔 𝑗 , (A.15)

where 𝑔 𝑗 is the “bare” value of the coupling constant that we find in Eq. (A.13).
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A.2 Finite-entanglement scaling of the three-state potts model.
Definition of the model and its CFT

We can further verify the emergence of relevant perturbations by applying it to
the three-state Potts model. It is a natural extension of the Ising model to the Z3

symmetry, and the Hamiltonian is

𝐻 = −
∑︁
⟨𝑖, 𝑗⟩

𝛿𝑠𝑖 ,𝑠 𝑗 , (A.16)

where 𝑠𝑖 takes 0, 1, and −1. It has a phase transition of Z3 symmetry breaking at
𝑇𝑐 = 1/log(1 +

√
3). The critical theory of the three-state Potts model is another

type of the minimal model M(6, 5) with 𝑐 = 4
5 [3, 44]. A set of primary operators

are shown in Table. A.1.

As opposed to the Ising model, there are off-diagonal operators as Φ 2
5 ,

7
5
, Φ 7

5 ,
2
5

and
Φ3,0, Φ0,3(currents).

Let us first examine the RG flow in a gapped system. Similar to the Ising model,
the phase transition is identified by spontaneous symmetry breaking. The high-
temperature phase is a trivial phase, whereas the low-temperature region is Z3

symmetry breaking phase. Thus, the fixed-point tensor is a stacking of three states
with their Z3 charge 0, −1, and 1.

Construction of the effective Hamiltonian
The RG flow can be seen by investigating the scaling dimensions. For instance,

we can take the spin operator 𝜎 = Φ 1
15 ,

1
15

and plot the value of 𝛿𝑥𝜎 = 𝑥𝜎 (𝐿) −
2
15 . Similarly, as in the Ising model, there is competition between irrelevant and
relevant operators: 𝑋 = Φ 7

5 ,
7
5

and 𝜖 = Φ 2
5 ,

2
5
. The thermal operator separates the Z3

symmetry-breaking phase from the trivial one. The finite-size corrections of 𝑋 and 𝜖
to 𝑥𝜎 are 𝐿−0.8 and 𝐿1.2, respectively. The fusion rules are𝜎×𝜎 = 1+𝜖+𝜎+𝑋+𝑌+𝑍 ,
𝜖 × 𝜖 = 1 + 𝑋 , and 𝜖 × 𝜎 = 𝜎 + 𝑍 . Hence, 𝛿𝑥𝜎 has the following form:

𝛿𝑥𝜎 = 2𝜋𝐶𝜎𝜎𝑋𝑔𝑋
(
𝐿

2𝜋

)−0.8
+ 2𝜋𝐶𝜎𝜎𝜖𝑔𝜖

(
𝐿

2𝜋

)1.2
. (A.17)

On the other hand, the perturbation of 𝜖 appears as a second-order term for 𝛿𝑥𝜖
because the fusion rule says 𝜖 × 𝜖 = 1 + 𝑋 . Consequently, 𝛿𝑥𝜖 can be computed as

𝛿𝑥𝜖 = 2𝜋𝐶𝜖𝜖𝑋𝑔𝑋
(
𝐿

2𝜋

)−0.8
+ 𝛼𝑔2

𝜖

(
𝐿

2𝜋

)2.4
, (A.18)

where 𝛼 is a constant determined from the second-order calculation.
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Figure A.2: 36𝛿𝑥𝜎 − 𝛿𝑥𝜖 for the high temperature phase. “+” is used when the sign
is negative. The red dotted line denotes the 𝐿−2 fitting while the light green one is
just a relevant 𝐿1.2 contribution from 𝜖 . Loop-TNR rotates the lattice by 𝜋

4 at each
RG step, and the tilted system is plotted with the blue dots.

Figure. A.1 shows the computed 𝛿𝑥𝜎 by TNR. As expected, it exhibits the com-
petition between irrelevant and relevant operators. The sign of 𝑔𝜖 is the opposite
between two phases, which is a manifest indication of the RG flow in the opposite
direction due to the thermal operator. 𝑥𝜎 has doubly degenerate states with Z3

charge ±1. In the low-temperature phase, these two states flow to 𝑥𝜎 (𝐿) → 0, and
the fixed-point tensor becomes three-fold degenerate. As for the irrelevant pertur-
bation, there seems to be a discrepancy between 𝛿𝑥𝜎 in Fig. A.1 and Eq. (A.17).
The data points are scattered for small system sizes and not precisely on the fitting
lines. This is due to the leading irrelevant operator we have not considered. We can
identify it as 𝑇2

cyl + 𝑇
2
cyl as followings. Just as we did in the left panel of Fig. 2.3,

the contributions from 𝑔𝑋 can be eliminated by combining 𝛿𝑥𝜎 and 𝛿𝑥𝜖 . The OPE
coefficients for the three-state Potts model are known, and the ratio of the two OPE
coefficients is 𝐶𝜖𝜖𝑋/𝐶𝜎𝜎𝑋 = 36 [45–49]. Thus, the origin of the "scattering" shall
be observed by plotting 36𝛿𝑥𝜎 − 𝛿𝑥𝜖 .

Figure. A.2 displays the result for the high-temperature phase. It is now obvious
that the scattering of Fig. A.1 comes from the 𝐿−2 perturbation denoted with the
red dotted line. Also, it has a conformal spin 𝑠 because it flips a sign at each step
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and 𝑠 ≡ 4 (mod 8) 1. As a result, we can conclude the irrelevant operator has the
conformal weights as (ℎ, ℎ̄) = (4, 0) and (0, 4), which are 𝑇2

cyl and 𝑇2
cyl. Finally, the

effective Hamiltonian of the critical three-state Potts model on the square lattice can
be constructed as

𝐻 = 𝐻∗
𝑃𝑜𝑡𝑡𝑠 +

∫ 𝐿

0
𝑑𝑥

[
𝑔𝑋Φ 7

5 ,
7
5
(𝑥) + 𝑔𝑇 (𝑇2

cyl + 𝑇
2
cyl)

]
. (A.19)

Finite-Entanglement scaling
At the critical temperature of the Ising model, the finite-𝐷 effect proves to be a

perturbation from the thermal operator. Let us verify it for the critical three-state
Potts model. Due to the irrelevant perturbations from 𝑇2

cyl +𝑇
2
cyl, the finite-𝐷 effects

are clearer for 𝑥𝜖 (𝐿) as seen in Fig. A.1(𝑏). This is shown in Fig. 2.5 of the main
text. Here, we demonstrate that 𝛿𝑥𝜎 (𝐿) also shows the universal behavior with
𝐿/𝜉 (𝐷). Figure. A.3 shows the rescaled correction to 𝛿𝑥𝜎 (𝐿). For 𝐿 > 𝜉 (𝐷), the
perturbation grows as 𝐿2 denoted by a gray line, which means that the emergent
perturbation scales as 𝐿1.2. Compared with Eq. (A.17), it is clear that the emergent
perturbation is from the thermal operator. However, as the system size increases, the
second-order perturbation becomes predominant as shown with a pink line. As 𝜖 is
the most relevant operator that is permitted by symmetry, it supports our conjecture
stated in the main text.

A.3 Supplemental information on the fixed-point tensor
Conformal mapping of S

The three-leg tensor 𝑆∗
𝛼𝛽𝛾

represents the three-sided thermofield double state [21]
corresponding to the geometry in Fig. 1(a) in the main text. This manifold Σ𝑆 is
mapped to the plane by a conformal mapping

𝑧 =
𝐿

2𝜋
[− ln(𝑤 − 𝑖) − 𝑖 ln(𝑤 + 1) + (1 + 𝑖) ln𝑤], (A.20)

which maps the three points inΣ𝑆, (𝑧1, 𝑧2, 𝑧3) = (∞, 𝑖∞,−(1+𝑖)∞), to (𝑤1, 𝑤2, 𝑤3) =
(𝑖,−1, 0). Then, the tensor element is

𝑆∗
𝛼𝛽𝛾

𝑆∗111
= |𝐽1 |𝑥𝛼 |𝐽2 |𝑥𝛽 |𝐽3 |𝑥𝛾 ⟨𝜙𝛼 (−1)𝜙𝛽 (𝑖)𝜙𝛾 (0)⟩p𝑙 , (A.21)

1For each iteration, the lattice rotates by 45 degrees, and it corresponds to the conformal
transformation 𝑤 = 𝑒

𝑖 𝜋
4 𝑧 on a complex plane. As the irrelevant perturbations 𝑇2

cyl and 𝑇2
cyl have a

conformal spin 4 and −4, they get an additional factor (𝑒 𝑖 𝜋
4 )4 = (𝑒 𝑖 𝜋

4 )−4 = −1 for an odd number of
steps. We can see this by plotting the data from even steps (original) and odd steps (tilt) separately.
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Figure A.3: Rescaled 𝛿𝑥𝜎 by 𝜉 (𝐷) = 𝐷𝜅 at the critical temperature. The resulting
data collapse onto a universal function that is independent of 𝐿/𝜉 (𝐷). If 𝐿/𝜉 (𝐷) <
1, the system is in the FSS region, while if 𝐿/𝜉 (𝐷) ≥ 1, it is in the FES region.
In the FES region, the scaling of the first-order and second-order perturbations are
indicated by a gray and pink line, respectively. 𝑥𝜎 is computed as an average value
of the first and second excitation energy.

where 𝐽𝑖 is the Jacobian of the conformal mapping (A.20). The initial states are

|𝜙1⟩ =
(
2𝜋
𝐿

)−𝑥𝛼
lim
𝑧→∞

𝑒2𝜋𝑧𝑥𝛼/𝐿𝜙𝛼 (𝑧) |𝐼c𝑦𝑙⟩,

|𝜙2⟩ =
(
2𝜋
𝐿

)−𝑥𝛽
lim
𝑧→𝑖∞

𝑒−𝑖2𝜋𝑧𝑥𝛽/𝐿𝜙𝛽 (𝑧) |𝐼c𝑦𝑙⟩,

|𝜙3⟩ =
(√

2𝜋
𝐿

)−𝑥𝛾
(A.22)

lim
𝑧→(−𝑖−1)∞

𝑒
(𝑖−1)√

2
2𝜋√
2𝐿
𝑧𝑥𝛾
𝜙𝛾 (𝑧) |𝐼c𝑦𝑙⟩.

The Jacobian can be computed as

|𝐽1 | =
�����(2𝜋
𝐿

)−1
lim
𝑧→∞

𝑒2𝜋𝑧/𝐿𝑤′(𝑧)
�����

=

�����(2𝜋
𝐿

)−1
lim
𝑤→𝑖

𝑒2𝜋𝑧/𝐿
(
𝑑𝑧

𝑑𝑤

)−1
����� . (A.23)

81



Using Eq. (10) in the main text, the first and second term is

𝑒2𝜋𝑧/𝐿 = exp[ln 𝑤

𝑤 − 𝑖 + 𝑖 ln
𝑤

𝑤 + 1
], (A.24)

𝑑𝑧

𝑑𝑤
=
𝐿

2𝜋

[
− 1
𝑤 − 𝑖 −

𝑖

𝑤 + 1
+ (1 + 𝑖)

𝑤

]
. (A.25)

Substituting these into Eq. (A.23),

|𝐽1 | =
���� lim
𝑤→𝑖

𝑤

𝑤 − 𝑖 exp
[
𝑖 ln

𝑤

𝑤 + 1

] ( [
− 1
𝑤 − 𝑖 −

𝑖

𝑤 + 1
+ (1 + 𝑖)

𝑤

] )−1 ����
=

����exp
(
𝑖 ln

𝑖

1 + 𝑖

)����
= 𝑒−𝜋/4. (A.26)

In the same way, we can show |𝐽2 | = |𝐽3 | = 𝑒−𝜋/4. Thus, the 3-leg tensor is

𝑆∗𝛼𝛽𝛾 = 𝑒
− 𝜋

4 (𝑥𝛼+𝑥𝛽+𝑥𝛾) ⟨𝜙𝛼 (−1)𝜙𝛽 (𝑖)𝜙𝛾 (0)⟩p𝑙 . (A.27)

Conformal mapping of T
The conformal mapping from the four-sided thermofield double state is

𝑧 =
𝐿

2𝜋
[− ln(𝑤 − 𝑖) + log(𝑤 + 𝑖) − 𝑖 ln(𝑤 + 1) + 𝑖 ln(𝑤 − 1)]

=
𝐿

2𝜋

[
ln

(
𝑤 + 𝑖
𝑤 − 𝑖

)
+ 𝑖 ln

(
𝑤 − 1
𝑤 + 1

)]
. (A.28)

To compute the Jacobian, we compute

𝑒2𝜋𝑧/𝐿 = exp
[
ln
𝑤 + 𝑖
𝑤 − 𝑖 + 𝑖 ln

𝑤 − 1
𝑤 + 1

]
, (A.29)

𝑑𝑧

𝑑𝑤
=
𝐿

2𝜋

[
− 1
𝑤 − 𝑖 +

1
𝑤 + 𝑖 −

𝑖

𝑤 + 1
+ 𝑖

𝑤 − 1

]
. (A.30)

The Jacobian is then computed similarly as before:

|𝐽1 |−1 = lim
𝑤→𝑖

����𝑒−2𝜋𝑧/𝐿
[
− 1
𝑤 − 𝑖 +

1
𝑤 + 𝑖 −

𝑖

𝑤 + 1
+ 𝑖

𝑤 − 1

] ����
=
𝑒𝜋/2

2
. (A.31)

The four-point function thus transforms as

𝑇∗
𝛼𝛽𝛾𝛿

𝑇∗
1111

= |𝐽1 |𝑥𝛼 |𝐽2 |𝑥𝛽 |𝐽3 |𝑥𝛾 |𝐽4 |𝑥𝛿 ⟨𝜙𝛼 (−1)𝜙𝛽 (𝑖)𝜙𝛾 (1)𝜙𝛿 (−𝑖)⟩p𝑙 ,

=

(
𝑒

𝜋
2

2

)−𝑥t𝑜𝑡

⟨𝜙𝛼 (−1)𝜙𝛽 (𝑖)𝜙𝛾 (1)𝜙𝛿 (−𝑖)⟩p𝑙 . (A.32)
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Figure A.4: The contraction of the fixed-point tensors. We obtain 𝑆 from TRG and
combine together to make 𝑆∗ and 𝑇∗. In this way, 𝑇∗ respects reflection symmetry
along the dotted lines in addition to 𝐶4 rotation symmetry.

𝐷4-symmetric TRG
We use the TRG scheme which aligns closely with the original paper’s method-

ology [6]. In principle, singular-value decomposition (SVD) of the four-leg tensor
should yield two identical symmetric tensors, given the 𝐷4 symmetry of the original
tensor. However, numerical errors sometimes make these two tensors non-identical.
To mitigate this, we consistently select one of the three-leg tensors and supplement
the other with its reflection. By adopting this approach, the fixed-point tensors,
depicted in Fig. A.4, maintain the 𝐷4 symmetry at every RG step by construction.

Four-point function of the critical Ising model
Here, we list the four-point function of the Ising model. Given the four coordinates
𝑧𝑖 and its cross-ratio 𝑥 ≡ (𝑧12𝑧34)/(𝑧13𝑧24), the four-point functions of the Ising CFT
are

⟨𝜖4⟩ =

������


∏
1≤𝑖< 𝑗≤4

𝑧
− 1

3
𝑖 𝑗


1 − 𝑥 + 𝑥2

𝑥
2
3 (1 − 𝑥) 2

3

������
2

,

⟨𝜎2𝜖2⟩ =
����� [𝑧 1

4
12𝑧

− 5
8

34 (𝑧13𝑧24𝑧14𝑧23)−
3
16

] 1 − 𝑥
2

𝑥
3
8 (1 − 𝑥) 5

16

�����2 ,
⟨𝜎4⟩ = |𝑧13𝑧24 |−1/4 |1 +

√
1 − 𝑥 | + |1 −

√
1 − 𝑥 |

2|𝑥 | 1
4 |1 − 𝑥 | 1

4
.
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Figure A.5: The finite-size corrections 𝛿𝐶𝛼𝛽𝛾 (𝐿) obtained from the numerical
simulation of the critical Ising model. The numerical results for higher energy
levels 𝛿𝐶𝜖𝜖1(𝐿) and 𝛿𝐶1𝜖𝜖 (𝐿) suffer from finite-𝐷 effects for 𝐿 > 100. The scalings
of the finite-size corrections are nevertheless universal, which is consistent with
Table III in Ref. [34]

The functions above are used to evaluate the analytic FP tensor elements in the main
text.

Universal finite-size corrections
Here, we discuss the finite-size corrections to Eq. (13) in the main text. The

finite-size corrections of the OPE coefficients are defined as

𝛿𝐶𝛼𝛽𝛾 (𝐿) = |𝐶𝛼𝛽𝛾 − 𝐶𝛼𝛽𝛾 (𝐿) |, (A.33)

where 𝐶𝛼𝛽𝛾 (𝐿) is defined in Eq. (13) in the main text. We found that 𝛿𝐶𝛼𝛽𝛾 (𝐿)
exhibits a universal power-law decay as

𝛿𝐶𝛼𝛽𝛾 (𝐿) ∼ 𝐿−𝑝𝛼𝛽𝛾 . (A.34)

Our numerical results suggest 𝑝𝛼𝛽𝛾 = 1/2 for (𝛼, 𝛽, 𝛾) = (1, 1, 𝜖), (1, 𝜖 , 1), (𝜖, 𝜖 , 𝜖),
(1, 𝜎, 𝜎), (𝜎, 𝜖, 𝜎), (𝜎, 𝜎, 1), and (𝜎, 𝜎, 𝜖), and 𝑝𝛼𝛽𝛾 = 2 for (𝛼, 𝛽, 𝛾) = (𝜖, 𝜖 , 1)
and (1, 𝜖 , 𝜖) as shown in Fig. A.5. Similar universal scalings were discussed in
Ref. [34], where they considered the overlap of critical wavefunctions 𝐴𝛼𝛽𝛾 =

⟨𝜙3∗
𝛾 |𝜙1

𝛼𝜙
2
𝛽
⟩. The three wavefunctions are defined on a ring with a circumference of
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𝐿1, 𝐿2, and 𝐿3 = 𝐿1 + 𝐿2, respectively, and the lower indices are the label of the
corresponding primary states. Ref. [34] found the overlap of wavefunctions to be

𝐴𝛼𝛽𝛾

𝐴111
∼


(
𝐿3
𝐿1

) 𝐿1
𝐿3

(
𝐿3
𝐿2

) 𝐿2
𝐿3


− 𝐿3

𝐿1 𝛼
− 𝐿3

𝐿2 𝛽
+𝛾

𝐶𝛼𝛽𝛾 + 𝐴̃
(𝑝)
𝛼𝛽𝛾

𝐿
−𝑝𝛼𝛽𝛾
3 , (A.35)

where 𝑝𝛼𝛽𝛾 is the leading finite-size correction and 𝐴̃
(𝑝)
𝛼𝛽𝛾

is a prefactor that is
independent of 𝐿3.

Our scaling exponents 𝑝𝛼𝛽𝛾 in Eq. (A.34) coincide with those from the previous
work in Eq. (A.35) for all fusion channels (see Table III of Ref. [34]). This universal
scaling can be explained by considering rings 1 and 2 as an orbifold theory. The
scaling 𝑝𝛼𝛽𝛾 = 1/2 is then attributed to the difference in the scaling dimensions
of the orbifold theory, which is 𝑥𝜖/2 = 1/2. (See Ref. [34] for details.) Similarly,
we conjecture that the universal scaling for 𝛿𝑇𝛼𝛽𝛾𝛿 ∼ 𝐿−1/3 can be understood by
considering the three of four legs to be an orbifold theory.

The three-State Potts model
Here, we present the OPE coefficients obtained from numerical simulations of the

classical critical three-state Potts model. The low-lying primary states of this model
are the identity operator "1", the two spin operators "𝜎," and the thermal operator
"𝜖 ," whose scaling dimensions are 0, 2/15, and 4/5. The non-trivial coefficients is
𝐶𝜎𝜎𝜖 = 0.546 [50]. Figure. A.6 exhibits the numerical results from Levin-TRG and
Evenbly-TNR as the Ising model in the main text. TRG/TNR schemes, generally
speaking, have finite-𝐷 effects for larger system sizes, and this effect is larger in
higher central charges. Since the central charge 𝑐 = 0.8 of the three-state Potts
model is larger than 𝑐 = 0.5 of the Ising model, these numerical errors manifest
in the data plots. In particular, the TRG data is unstable due to CDL tensors and
quickly diverts from the theoretical values. However, Evenbly-TNR’s results still
converge to the correct values.
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Figure A.6: The OPE coefficients of the critical three-state Potts model evaluated by
setting 𝑥𝑆 = 𝑒𝜋/4. The black dotted lines denote the theoretical values 0, 0.546, and
1 [50]. The data points, denoted by filled circles "◦" and crosses "+," are obtained
from Levin-TRG(𝐷 = 88) and Evenbly-TNR(𝐷 = 40), respectively.
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