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We study a three-leg spin-1/2 ladder with geometrically frustrated interleg interactions. We call
this model an anisotropic triangular-strip (ATS) model. We numerically and field-theoretically
show that its ground state belongs to a gapless symmetry-protected topological (SPT) phase. The
numerical approach is based on density-matrix renormalization group analyses of the entanglement
entropy and the entanglement spectrum. Whereas the entanglement entropy exhibits a critical
behavior, the entanglement spectrum is nontrivially degenerate. These entanglement properties
imply that the ground state is a gapless topological phase. We investigate the ATS model using a
quantum field theory to support the numerical findings. When the frustrated interchain interaction
is deemed a perturbation acting on the three spin chains, the frustrated interchain interaction almost
isolates the second chain from the other two chains. However, at the same time, the second chain
mediates a ferromagnetic interaction between the first and third chains. Therefore, the ground
state of the ATS model is a gapless Tomonaga-Luttinger liquid weakly coupled to a spin-1 Haldane
chain with irrelevant interactions. Last but not least, we show that the gapless SPT phase of the
ATS model is a symmetry-protected critical phase. We point out that the symmetry protection of
criticality is essential in characterization of the gapless SPT phase.

I. INTRODUCTION

The spin-1 Haldane phase1–6 is regarded as one of the
best-known examples of symmetry-protected topological
(SPT) phases4,5,7–9. The SPT phase is a gapped sym-
metric phase that is accompanied by no local order pa-
rameter but is still distinct from the trivial phases. What
characterizes the SPT phase is a nontrivial short-range
entanglement robust to any local disturbance under sym-
metries. The ground state in the spin-1 Haldane phase
exhibits a characteristic entanglement spectrum where
every eigenvalue is even-fold degenerate under symme-
tries4,5. This nontrivial degeneracy distinguishes the
spin-1 Haldane phase from the trivial phases. The de-
generacy is protected when at least one of the following
three symmetries is present: (i) the D2

∼= Z2 × Z2 spin-
rotation symmetry, (ii) the time-reversal symmetry, and
(iii) the bond-centered inversion symmetry4,5.

Recently, a gapless analog of the SPT phase, called
a gapless SPT phase, has drawn attention10–21. While
gapped SPT phases are well understood, characterization
of gapless SPT phases is underway because of their non-
triviality exemplified by the coexistence of gapless bulk
and edge modes. The gapped SPT phase hosts gapped
excitations in bulk and gapless excitations on edges. The
existence of the finite excitation gap in bulk partly as-
sures the stability of the edge mode. On the other hand,
the gapless SPT phase has gapless excitations both in
bulk and edges. It is highly nontrivial how these gapless
modes in bulk and on edges stably coexist in the gapless
SPT phase.

Scaffidi et al. constructed a gapless SPT state by

first preparing the gapped Z2 × Z2 SPT state and then
making it gapless10,11. Their argument is based on the
concept of the decorated domain wall. This gapped
Z2 × Z2 SPT state is closely related to the spin-1 Hal-
dane state. The Hamiltonian of Ref.10 has a minimal
structure with the essence of the spin-1 Haldane state
as the Z2 × Z2 SPT state. However, their Hamiltonian
contains three-spin interactions challenging for experi-
mental realizations. Originally, the spin-1 Haldane phase
attracted broad attention for the simple and experimen-
tally feasible parent Hamiltonian22. Therefore, it will be
worth pursuing an experimentally feasible antiferromag-
netic model as a gapless-SPT counterpart to the spin-1
Heisenberg antiferromagnetic chain.

This paper shows that a simple spin-1/2 three-leg
spin ladder with geometrically frustrated interchain in-
teractions (Fig. 1a) exhibits a gapless SPT phase. We
call this model an anisotropic triangular-strip (ATS)
model. This model is relevant to real compounds such
as Cu3(OH)4MO4 for M = S,Mo23–29. In the first part
of the paper, we show that the ground state of the ATS
model behaves as a gapless Tomonaga-Luttinger liquid
(TLL)30 with a topologically degenerate entanglement
spectrum by using the density matrix renormalization
group (DMRG) method. Second, we give a firm theoret-
ical foundation to the numerical findings31. Last but not
least, we show that an inversion symmetry protects the
criticality and the topological degeneracy of the entan-
glement spectrum. In this sense, our gapless SPT phase
qualifies as a symmetry-protected critical phase32.

This paper is organized as follows: In Sec. II, we will
introduce the ATS XXZ model and explain its proper-
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ties. In Sec. III, we will show the numerical calculation
results of the model. Then, in Sec. IV, we discuss the
gapless SPT phase of the model by a field-theoretical ap-
proach. Finally, in Sec. V, we discuss the symmetries
which protect the gapless SPT phase.

II. MODEL

The ATS model has the following Hamiltonian on a
three-leg ladder:

H =J

L∑
i=1

3∑
n=1

~Si,n ·∆ ~Si+1,n

+ J×
∑
n=1,3

L∑
i=1

~Si,2 ·∆ (~Si,n + ~Si+1,n), (2.1)

where ~Si,n denotes the S = 1/2 spin operator at the
ith site along the leg on the nth leg (see Fig. 1a), and
~Si,m ·∆ ~Sj,n denotes the XXZ interaction;

~Si,m ·∆ ~Sj,n =
1

2
(S+
i,mS

−
j,n + S−i,mS

+
j,n) + ∆Szi,mS

z
j,n.

(2.2)

We consider antiferromagnetic exchange couplings J >
0 and J× > 0. We also limit ourselves to a situation
0 < 1−∆� 1 of the weakly easy-plane anisotropy. We
denote the system length as L and the total number of
spins as 3L.

Before giving detailed numerical and field-theoretical
discussions, let us briefly explain why we expect the gap-
less SPT phase in this ATS model (2.1). The key point is
that geometrically frustrated interactions [the second line
of Eq. (2.1)] couple the second (middle) spin-1/2 XXZ
chains with the first (upper) and the third (lower) chains
(Fig. 1a). Let us regard J× as a perturbation to three de-
coupled spin chains. We can expect that a second-order
process will yield a direct ferromagnetic interchain inter-
action between the first and third chains of ∼ −J2

×/J
(see Sec. IV). On the other hand, the geometrical frus-
tration of the interchain interactions suppresses the anti-
ferromagnetic correlation between the second chain and
the other two chains. Hence, we expect the spin-1/2 ATS
model to effectively turn into a set of an almost isolated
spin-1/2 XXZ chain and a two-leg spin-1/2 ladder. The
former consists of the second chain, and the latter the
first and third chains. This almost decoupled spin-1/2
XXZ chain behaves as the gapless TLL at low energies.
On the other hand, the first and third chains effectively
form a spin-1/2 two-leg ladder with the ferromagnetic
interchain interaction.

It is well known that this spin ladder can have the
spin-1 Haldane state as its ground state33. Therefore, we
can naively expect the ground state that may be approx-
imated as a tensor product state of the TLL from the
second chain and the SPT (spin-1 Haldane) state from

(a) Spin-1/2 anisotropic triangular strip XXZ model.

(b) Finite-size cluster with V-shaped edges.

(c) Finite-size cluster with parallel edges.

FIG. 1. Spin-1/2 ATS XXZ model with intrachain interaction
J and frustrated interchain interaction J×. (a) Infinite chain,
(b) finite-size cluster with V-shaped edges and (c) finite-size
cluster with parallel edges.

the other chains. In what follows, we demonstrate that
the ground state of the ATS model (2.1) is essentially
the tensor product state that we guessed here. More-
over, we show that even when the ground state is the
product state of the gapless state and the gapped SPT
state, their symmetry protection differs from that of the
gapped SPT phase because the Hamiltonian contents are
not decoupled. We will come back to this point later in
Sec. V.

III. NUMERICAL RESULTS

This section presents the numerical results of the ATS
model (2.1). Throughout this section, we set J = 1,
J× = 0.5, and ∆ = 0.8. We performed the finite-size
density-matrix renormalization group (DMRG) calcula-
tion and infinite-size DMRG (iDMRG) calculation to ob-
tain the ground state and investigate its properties. We
used the ITensor library34 for the finite-size DMRG cal-
culations, where we used the bond dimension m ≤ 2400
and kept the truncation error up to 10−6. We confirmed
the convergence of the ground energy and entanglement
entropy at the center bond within the sweep count. On
the other hand, we used the TeNPy library35 for the
iDMRG calculations, where we used the bond dimension
m ≤ 1200.

The finite-size DMRG calculations were performed un-
der the open boundary condition. We consider two kinds
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of finite-size clusters, one with V-shaped edges (Fig. 1b)
and the other with parallel edges (Fig. 1c). One might
expect that they differ only in the shape of the left and
right edges, which would be insignificant to bulk quan-
tities. This expectation is mostly the case. However,
the difference in the cluster shapes becomes vital in, for
example, entanglement properties because of symmetries
in the corresponding Hamiltonians. With the V-shaped
edges, the system breaks the inversion symmetry, while
the system with the parallel edges does not. We will spec-
ify the shape of the system when we refer to the finite-size
DMRG results.

SPT phases are characterized by no local order pa-
rameters. In some gapped SPT phases, nonlocal order
parameters are still available. For example, a string or-
der parameter allows us to distinguish the spin-1 Haldane
phase from the trivial phases36,37. A possible string or-
der parameter in our model is discussed in Appendix A.
In general, however, we cannot a priori expect the exis-
tence of the nonlocal order parameter that characterizes
the SPT phase. Instead of relying on an order parame-
ter, one can characterize the SPT phase with the entan-
glement entropy and the entanglement spectrum under
symmetries4,5. For example, the even-fold degenerate en-
tanglement spectrum of the spin-1 Haldane state enables
one to distinguish it from the topologically trivial phase.

We employ the same strategy to characterize the gap-
less SPT phase. Namely, in order to conclude that the
ATS model (2.1) has the gapless SPT phase, we con-
firm the following two properties of the system. First,
we check that the ground state is gapless by investigat-
ing the ground state’s entanglement entropy. Next, we
check the even-fold degeneracy in the entanglement spec-
trum. Furthermore, we will show that these properties
are protected by symmetries later in Sec. V.

A. Entanglement entropy and central charge

Let us discuss the entanglement entropy and central
charge. We divide the whole system into two subsystems
A and B. We define the reduced density matrix of the
subsystem A, by using the ground state |ψ〉 of the whole
system, as

ρA = TrB |ψ〉 〈ψ| , (3.1)

where TrB denotes the trace over the other subsystem
B. The entanglement entropy of the subsystem A, S(A),
is defined as the von-Neumann entropy of the reduced
density matrix ρA

38,39,

S(A) = TrA [−ρA ln ρA] = −
∑

i=1,2,···
λi lnλi, (3.2)

where {λ1, λ2, · · · } are the eigenvalues of the matrix ρA.
The entanglement entropy can characterize how strongly
the subsystem A is entangled to the rest of the system,

B. For example, if the state is the product state of sub-
system A and B, |A〉 ⊗ |B〉, the entanglement entropy
(3.2) vanishes because {λ1, λ2, · · · } = {1}.

Throughout this paper, we deal with the one-
dimensional model. We can thus take the subsystem A
as a one-dimensional system with the length l from the
left edge. Note that this subsystem A contains the 3l
sites. Therefore, we can represent the entanglement en-
tropy as S(l). It is reported that if the system obeys
a conformal field theory (CFT) with the central charge
c > 0, the entanglement entropy is given by the following
Calabrese-Cardy formula40,41:

S(l) =
c

6
ln

[
2L

π
sin

(
πl

L

)]
+ c′1 + ln g, (3.3)

where c′1 is a constant, and the ln g term rep-
resents boundary effects proportional to ln g ∼
(−1)l/

(
L
π sin

(
πl
L

))
42. The formula (3.3) is generically

valid in a one-dimensional system with the open bound-
ary condition.

In the ATS XXZ model, we take the subsystem as
shown in Fig. 2. For the calculations of the entangle-
ment entropy, we adopt the finite-size system with the
parallel edges (Fig. 1c) because the system is then sym-
metric under an inversion,

Sj,n → SL+1−j,4−n. (3.4)

We calculate the entanglement entropy for each value
of l and fit the data using the Calabrese-Cardy formula
(3.3). As a typical example of the calculation results,
Fig. 3 shows the entanglement entropy of the ATS XXZ
model with ∆ = 0.8, J× = 0.5, and the system length
L = 146. In the data shown in Fig. 3, we subtracted
the edge term from the numerically-calculated entangle-
ment entropy for better visibility. As a result, the nu-
merical data in Fig. 3 is well fitted with Eq. (3.3) with
the central charge c ≈ 1.90. This agreement with the
Calabrese-Cardy formula (3.3) means that the system is
indeed gapless and described by a CFT at low energies.

To evaluate the central charge in the infinite-size limit
L → +∞, we calculated the system-size dependence of
the central charge. Figure 4 shows the numerically evalu-
ated central charges (the filled circles) for various system
lengths L. Each value of the central charge is derived in
the same way as written above. The central charge ex-
hibits an interesting system-size dependence. When the
system length L is short, the central charge looks almost
constant. Still, it seems that the central charge with long
enough L decreases as L increases. Here, we simply fit
the data points for the five largest system lengths with a
straight dashed line in Fig. 4. The fitted line implies that
the central charge c is close to one, c = 1.02±0.06, in the
L → +∞ limit, and correspondingly the ground state is
a c = 1 TLL. We find the similar value c ∼ 0.93 when fit-
ting the data by 1/(L lnL), considering the logarithmic
correction in the vicinity of the SU(2) point.

Note that we would overestimate the central charge c
in the L → +∞ limit if we used the data with a small
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FIG. 2. Subsystem of ATS XXZ model used for calculations
of entanglement entropy and central charge.

FIG. 3. Entanglement entropy for ∆ = 0.8, J× = 0.5, with
L = 146. The horizontal axis is the length of the subspace l
(cf. Fig. 2), and the vertical axis is the values of the entangle-
ment entropy. The solid line represents the fitting result by
the Calabrese-Cardy formula (3.3), where we have subtracted
the edge term for better visibility.

L only. This behavior of the central charge will be at-
tributed to the possible presence of nontrivial edge states
in the gapless SPT state. As we show in the next sub-
section, the ground state of this system belongs to the
gapless SPT phase whose topological property is akin to
the spin-1 Haldane state. As is well known, the spin-
1 Haldane state is accompanied by a spin-1/2 state on
each edge of the system. In bulk, magnetic excitations
cost a finite excitation energy whose minimum value is
called the Haldane gap43. The presence of the bulk gap
makes the edge state well-localized around the edges. On
the other hand, the bulk gap is infinitesimal in the gap-
less SPT phase. In particular, the bulk spin gap is in-
finitesimal in our case. Therefore, the edge spins can be
extended deep inside the bulk10. When the system size
is too small, we would overcount the number of gapless
bulk modes. Since the central charge reflects the num-
ber of gapless modes, it will be overestimated for small
systems. Note that such an effect was also reported by
Nataf et al.44 in a critical SU(3) spin chain.

FIG. 4. Central charge c derived from the entanglement en-
tropy. The horizontal axis is 1/L, and the vertical axis is the
value of the central charges. The calculated value of central
charge approaches c ≈ 1 as the system length L increases.

B. Entanglement spectrum

Now that we confirmed that the criticality of the
ground state, we investigate topological properties of the
system based on the entanglement spectrum. To cal-
culate the entanglement spectrum, we divide the whole
system into 2 subsystems A and B, as in Sec. III A. The
reduced density matrix of the subsystem A has been de-
fined in Eq.(3.1). By using the reduced density matrix
ρA, we can define the entanglement spectrum {µi}i=1,2,···
as µi = − lnλi, where λi are the eigenvalues of the re-
duced density matrix ρA

4,45.
Let us recall the relation of µi to the ground state |ψ〉

of the system. In general, |ψ〉 is written as

|ψ〉 =
∑
i,j

Mij |i〉A |j〉B , (3.5)

where Mij is an NA × NB matrix, where NA is the di-
mension of the Hibert space of the subsystem A, and NB
is that of the subsystem B. By using the singular value
decomposition, we can diagonalize the matrix Mij and
obtain;

|ψ〉 =
∑

I=1,2,···
ΛI |I〉A |I〉B , (3.6)

with ΛI ≥ 0. Then, the entanglement spectrum {µi}i is
defined as

Λ2
i = e−µi . (3.7)

It was reported that the spin-1 Haldane state shows
the even-fold degeneracy of the entanglement spectrum4.
Hence, we can naively expect the same even-fold degen-
erate entanglement spectrum in our gapless SPT phase,
as briefly explained below. Generally, for a simple tensor
product of a gapped SPT ground state |ψ1〉 and a gapless
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ground state |ψ2〉, the entanglement spectrum is calcu-
lated as {µ1,i+µ2,j}i,j , where {µ1,i} is the entanglement
spectrum of |ψ1〉 and {µ2,i} is that of |ψ2〉. Since every
µ1,i has its partner µ1,i′ so that µ1,i = µ1,i′ with i 6= i′,
the entanglement spectrum {µ1,i +µ2,j}i,j of the tensor-
product state is even-fold degenerate. Therefore, we can
expect that an essentially same even-fold degenerate en-
tanglement spectrum is found in our gapless SPT state,
if we regard it as the effective product state.

Figure 5 shows a DMRG result of the entanglement
spectrum of the ATS XXZ model with ∆ = 0.8, J× = 0.5
with the system length L = 100. We use the system with
the parallel edges (Fig. 1c) and impose the open bound-
ary condition. To calculate the entanglement spectrum,
we cut the system at a center bond (l = L/2) invariant
under the inversion (3.4). As Fig. 5 shows, we observe the
even-fold degeneracy for every eigenvalue µi. Note that
the inversion symmetry is critical to protect the even-fold
degeneracy. In the entanglement spectrum of the model
with the V-shaped edges, we did not observe clear even-
fold degeneracy because the model breaks the inversion
symmetry in the finite-size system, and the calculation
results suffer from rather significant finite-size effects.

To avoid this ambiguity about the finite-size cluster
shape, we adopt the iDMRG method to further investi-
gate the entanglement spectrum in the thermodynamic
limit. To calculate the entanglement spectrum with the
iDMRG method, we can consider two types of cuts, as
shown in Fig. 6. Note that both cuts respect the inver-
sion symmetry in the infinite-size system in contrast to
the finite-size cases. Figure 7 shows the iDMRG result of
the entanglement spectrum of the ATS XXZ model with
the V-shaped cut, and that for the straight cut is given in
Fig. 8. The both types of cuts lead to the even-fold degen-
erate entanglement spectra. Moreover, the entanglement
spectrum of the model with the straight cut resembles the
one we obtained in the finite-size system with the paral-
lel edges in Fig. 5, as naively expected. The even-fold
degeneracy is entirely consistent with the simple physi-
cal picture that our gapless SPT state can be regarded
essentially as a tensor product of the gapped Haldane
state and gapless TLL. The even-fold degenerate entan-
glement spectrum implies the emergence of the spin-1/2
edge states akin to those in the spin-1 Haldane phase.
However, we cannot observe the edge state in the iDMRG
calculations by construction or in the finite-size DMRG
calculations because of the significant finite-size effects.
We also note that no spontaneous symmetry breaking is
found in the iDMRG calculations of the ground state of
the ATS model.

Let us conclude this section. The numerical result of
the entanglement entropy implies that the ground state
is the critical TLL state with c = 1. In addition, be-
cause of the even-fold degeneracy in the entanglement
spectrum, the ground state simultaneously belongs to an
SPT phase. Therefore, we can conclude that the ATS
XXZ model with the parameters ∆ = 0.8, J× = 0.5 has
the gapless SPT state as its ground state. The following

FIG. 5. The entanglement spectrum of ATS XXZ model for
∆ = 0.8, J× = 0.5, L = 100 at center bond. This result is
calculated with the finite DMRG method, and we took the
lowest-energy state in the sector where the total magnetiza-
tion is 1.

FIG. 6. Cut section of ATS model when calculating entan-
glement spectrum with iDMRG method. There are two types
of cuts. One is V-shaped (shown in the left panel), and the
other is straight (shown in the right panel).

section gives a quantum field theoretical support to this
claim.

IV. EFFECTIVE FIELD THEORY

This section develops a low-energy effective field the-
ory of the ATS model. This effective field theory ex-
plains how the geometrically frustrated interchain inter-
action enables the gapless SPT phase in the ATS model.
The effective field theory also uncovers that this gap-
less SPT phase qualifies as a symmetry-protected critical
phase32,46.

A. Effective nearest-neighbor decoupling and
ferromagnetic next-nearest-neighbor coupling

To derive the effective field theory, we regard the in-
terchain exchange J× as a perturbation and set ∆ = 1
for a while in this section. We incorporate the intrachian
easy-plane anisotropy into the effective field theory after
taking the frustrated interchain interaction into account.
The ATS Heisenberg model’s Hamiltonian consists of two
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FIG. 7. The entanglement spectrum of ATS XXZ model for
∆ = 0.8, J× = 0.5 with V-shaped cutting. The horizontal
axis is the numbering of the entanglement spectrum, and the
vertical axis represents their values.

FIG. 8. The entanglement spectrum of ATS XXZ model for
∆ = 0.8, J× = 0.5 with parallelogram-type cutting. The hor-
izontal axis is the numbering of the entanglement spectrum,
and the vertical axis represents their values.

parts.

H = H0 + V, (4.1)

H0 = J
∑
j

3∑
n=1

~Sj,n · ~Sj+1,n, (4.2)

V = J×
∑
j

∑
n=1,3

~Sj,2 · (~Sj,n + ~Sj+1,n). (4.3)

The unperturbed model with the Hamiltonian H0 is
made of three decoupled spin-1/2 Heisenberg chains.
Each Heisenberg chain has the TLL ground state30.

Let us deal with the single spin-1/2 Heisenberg chain
based on a non-Abelian bosonization approach31. The

spin operator ~Sj,n at low energies is represented in terms
of two slowly varying fields,

~Sj,n ≈ ~Jn(x) + (−1)j ~Nn(x), (4.4)

where ~Jn(x) and ~Nn(x) are the uniform and staggered

parts of the spin operator. As well as ~Jn and ~Nn, a
dimer operator,

(−1)j ~Sj,n · ~Sj+1,n ≈ εn(x), (4.5)

plays fundamental roles in the bosonized theory. The

uniform part ~Jn is further split into two, ~Jn = ~JR,n +
~JL,n. Here, R and L denote the right and left directions
along which the boson field of the TLL propagates. In
particular, JzR,n and JzL,n are simply represented as

JzR,n =
1√
2π
∂xϕR,n, JzL,n =

1√
2π
∂xϕL,n, (4.6)

where ϕR,n (ϕL,n) is the right-moving (left-moving) chi-
ral boson of the TLL. The unperturbed Hamiltonian is
written as

H0 =

3∑
n=1

∫
dx

[
2πv

3
( ~JR,n · ~JR,n + ~JL,n · ~JL,n)

+ γbs
~JR,n · ~JL,n

]
, (4.7)

where v = πJa0/2 is the velocity of the bosonic exci-
tation of the TLL and γbs = O(J) > 0 represents the
strength of the back scattering. a0 is the lattice spac-
ing and hereafter set as unity unless otherwise stated.
The SU(2) spin rotational symmetry allows us to rewrite
~JR,n · ~JR,n = 3(JzR,n)2 = 3(∂xϕR,n)2/2π and ~JL,n · ~JL,n =

3(∂xϕL,n)2. The two chiral bosons ϕR,n and ϕL,n for each
n builds two (nonchiral) boson fields φn and θn,

φn = ϕL,n + ϕR,n, (4.8)

θn = ϕL,n − ϕR,n. (4.9)

The unperturbed Hamiltonian H0 is thus given by

H0 =

3∑
n=1

∫
dx

[
v

2
{(∂xθn)2 + (∂xφn)2}+ γbs

~JR,n · ~JL,n
]
.

(4.10)

The back-scattering term is marginally irrelevant and
mostly negligible in the TLL phase. The back-scattering
term affects neither the excitation spectrum nor the en-
tanglement spectrum. In the TLL phase, the back-
scattering term only adds quantitative corrections to
physical quantities47–49.

Naively, the geometrically frustrated interchain inter-
action V is composed of marginal or irrelevant interac-
tions only.

Vnaive =

∫
dx

[
γJ ~J2 · ( ~J1 + ~J3) + γtw(∂x ~N2) · ( ~N1 + ~N3)

]
,

(4.11)
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with γJ = J× and γtw = J×. All the terms in Eq. (4.11)
have the scaling dimension 2 and marginally irrelevant.
The naive representation (4.11) is inaccurate because it
misses relevant interactions generated in the course of the
renormalization-group (RG) transformation50. We can
show that the perturbation expansion about V contains
more interactions50,51 (see also Appendix B).

Veff =

∫
dx

[
γJ ~J2 · ( ~J1 + ~J3) + γtw(∂x ~N2) · ( ~N1 + ~N3)

]
+

∫
dx(γ′J ~J1 · ~J3 + γN ~N1 · ~N3 + γεε1ε3).

(4.12)

The additional terms ~J1 · ~J3, ~N1 · ~N3, and ε1ε3 have the
scaling dimension 2 and 1, and 1 respectively. The latter
two thus can generate an excitation gap. As we derive
in Appendix. B, the coupling constants γ′J and γN are
second order of J×/J :

γ′J = −
J2
×

2π3J
, (4.13)

γN = −
J2
×

4π3J
. (4.14)

Note that γN is the second order of J×/J . A previous
study50 concluded that γN is O(J(J×/J)4). We obtained

qualitatively the same relevant interactions ~J1 · ~J3 and
~N1 · ~N3 as those derived in Ref.50 (see Eq. (5) therein).
However, we found γN is actually O(J(J×/J)2) (see Ap-
pendix B).

The fourth-order correction to Veff also includes an-
other relevant interaction ε1ε3. Since ~N1 · ~N3 and ε1ε3

have the same scaling dimension and γN � γε, the
ground state is governed by the strong-coupling limit of
γN .

Note that γN < 0 is ferromagnetic. The frustrated in-
terchain interaction V ≈ Veff develops the ferromagnetic
interaction between the first and third legs. The geo-
metrical frustration makes the interchain interactions be-
tween the nearest-neighbor legs much weaker than those
between the next-nearest-neighbor ones. In particular,
the interactions between the nearest-neighbor chains are
marginally irrelevant in the RG sense. Whereas the first
and third legs are ferromagnetically coupled, the second
leg is almost decoupled from the other legs. Since the
two-leg spin-1/2 ladder with a ferromagnetic interleg in-
teraction has a SPT ground state that belongs to the
spin-1 Haldane phase, the ground state of our system
is approximately a product state of the TLL within the
second leg and the gapped SPT state. The present phys-
ical picture within the perturbation theory is expected
to hold to some extent in an extended parameter region
and can provide a basis for understanding the numerical
results in the previous section.

V. SYMMETRY PROTECTION

In the previous sections, we showed that the ground
state of the ATS XXZ model has simultaneously the gap-
less nature and the gapped SPT feature, which provides
a naive definition of a gapless SPT state. However, a gen-
uine gapless SPT state should be characterized by sym-
metries which protect the entire state including gapless
and gapped sectors from symmetry-preserving perturba-
tions. In this section, we clarify the symmetry protec-
tion of our ground state and argue that it can indeed
be understood as a genuine gapless SPT state but not
just as a merely decoupled pair of a gapless TLL and
a gapped SPT state. We first point out that the gap-
less SPT phase hitherto investigated in this paper is a
symmetry-protected critical (SPC) phase32,46. The SPC
phase is characterized by “ingappability”52 under sym-
metries, that is, impossibility of opening an excitation
gap with keeping the imposed symmetries. According
to Ref.32, the ground state of the spin-1/2 ATS model
(4.1) belongs to the SPC phase protected by the SU(2)
spin-rotation symmetry, the one-site translation symme-
try along the legs, and the emergent Lorentz symmetry32.

As our numerical results imply, we can relax the
condition of the SU(2) spin-rotation symmetry to the
U(1) oZ2 symmetry without opening an excitation gap.
The U(1)oZ2 group refers to the continuous spin rotation
around the z axis53. This symmetry reduction is possi-
ble because, as we showed in the previous section, the
criticality of the ATS Heisenberg model is basically at-
tributed to the TLL of the Heisenberg antiferromagnetic
model on the second leg. The TLL is robust against the
introduction of the easy-plane anisotropy. However, the
symmetries for the SPC state alone do not fully char-
acterize the gapless SPT state. We need an additional
symmetry to protect the topological nontriviality of the
gapless SPT phase besides the symmetry protected crit-
icality. Although one may naively expect that the sym-
metries protecting the spin-1 Haldane state will play the
role, they are not enough as will be shown below. Here,
we provide a field theoretical argument on the symme-
tries required to simultaneously protect the ingappability
and the topological nontriviality in our system.

A. D2 and time-reversal symmetric modification

First, to see that the symmetries for the spin-1 Haldane
state do not protect our gapless SPT state, we consider
the following modification of the ATS XXZ model (see
Figure 9). We introduce a real parameter t ∈ [0, 1] and
modify the Hamiltonian (2.1) to

H(t) = H + tH ′, (5.1)

with an interchain interaction,

H ′ = −J×
∑
j

∑
n=1,3

~Sj,2 ·∆ ~Sj+1,n. (5.2)
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FIG. 9. The ATS XXZ model with the inversion symmetry-
breaking interchain interaction, represented by the Hamilto-
nian (5.1). The green bonds represent the XXZ interaction
with exchange coupling (1− t)J×. The red line is the cut for
the calculation of the entanglement spectrum.

H(t = 0) gives the original spin-1/2 ATS XXZ Hamil-
tonian (2.1) but H(t = 1) gives the Hamiltonian of a
spin-1/2 unfrustrated three-leg XXZ ladder:

H(1) = J
∑
j

3∑
n=1

~Sj,n ·∆ ~Sj+1,n + J×
∑
j

∑
n=1,3

~Sj,2 ·∆ ~Sj,n.

(5.3)

For J > 0 and J× > 0, the unfrustrated spin ladder
(5.3) has the SPC phase for ∆ ≈ 1. However, this SPC
phase is topologically trivial. This can be clearly seen
in degeneracy lifting of the entanglement spectrum. Fig-
ure 10 shows the iDMRG calculation results of the en-
tanglement spectrum of model (5.1). They indicate that
the degeneracy of entanglement spectrum disappears as
soon as we add the interaction (5.2) to the original ATS
XXZ model.

The modification (5.1) keeps the D2 spin-rotation sym-
metry and the time-reversal symmetry. Let us recall
that the spin-1 Haldane phase is protected by one of
the D2

∼= Z2 × Z2 spin-rotation symmetry, the time-
reversal symmetry, and the bond-centered inversion sym-
metry. Though the Hamiltonian (5.1) keeps the D2

spin-rotation and time-reversal symmetries for the entire
range 0 ≤ t ≤ 1, this modification ruins the topologi-
cal nontriviality. The difference in symmetry protection
from the spin-1 Haldane phase implies that we need to
discuss the symmetry protection of topological nontrivi-
ality and the criticality at the same time to characterize
the gapless SPT phase.

B. Inversion symmetry

Here, we show that an inversion symmetry along the
leg direction protects the topological nontriviality of the
gapless SPT phase. The infinite-size ATS (Fig. 1a) with
the preiodic boundary condition has a symmetry under

FIG. 10. Entanglement spectrum of the ATS XXZ model
with additional unfrustrated interchain interaction (5.2). The
horizontal axis is the value of t, and the vertical axis is the
entanglement spectrum.

the following inversion I:

I

~Sj,1~Sj,2
~Sj,3

 I−1 :=

~SL+1−j,1
~SL−j,2
~SL+1−j,3

 . (5.4)

This I inversion works as a site-centered inversion on the
second leg but as a bond-centered one on the first and
third legs. In the perturbation theory in Sec. IV, the sub-
system made of the first and third legs effectively forms
the spin-1/2 ladder with the ferromagnetic rung inter-
action whose ground state is the spin-1 Haldane state.
Within this subsystem, the I symmetry turns into the
bond-centered inversion symmetry that protects the spin-
1 Haldane phase. Now we recall the modification (5.1)
that respect the D2 spin-rotation and time-reversal sym-
metries. The infinitesimal t 6= 0 breaks the even-fold
degeneracy of the entanglement spectrum because the
added interaction (5.2) breaks the I symmetry. There-
fore, the I symmetry imposes t = 0 in the Hamiltonian
(5.1).

In the gapless SPT phase of the ATS XXZ model,
the topological nontriviality is protected by the inversion
symmetry and by neither the D2 spin-rotation symmetry
nor time-reversal symmetry, different from the gapped
SPT phase (the spin-1 Haldane phase). The geometri-
cal frustration of interchain interactions make the I in-
version symmetry special and different from the D2 and
time-reversal symmetries. As we saw, the ground state
becomes topologically trivial as soon as the geometrical
frustration is resolved (Fig. 10).

Furthermore, we point out that the I symmetry also
protects the effective decoupling of the total system into
the gapless TLL sector and gapped SPT sector at low en-
ergy. In terms of the effective field theory, the geometrical
frustration forbids the relevant interchain interactions in
the sense of the renormalization group. A complete list
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of such relevant interchain interactions is available. The
list is given by

{ ~N2 · ~Nn, ε2εn, N
a
2 εn, ε2N

a
n}, (5.5)

for n = 1, 3 and a = x, y, z. The last two interactions
Na

2 εn and ε2N
a
n are forbidden by the U(1) spin-rotation

symmetry. The I inversion symmetry excludes the re-

maining two interactions, ~N2 · ~Nn and ε2εn for n = 1, 3,
from the effective field theoretical Hamiltonian.

We can directly show that the I symmetry forbids both
~N2 · ~Nn and ε2εn. The interchain interaction (5.2) intro-
duces relevant interactions such as

V ′ = γ′
∫
dx ~N2 · ( ~N1 + ~N3), (5.6)

with γ′ ∝ J×. The relevant interaction (5.6) violates the
gapless second leg from the topological subsystem of the
first and third legs. The I symmetry indeed forbids the
interaction (5.6) to enter into the Hamiltonian. I acts

on ~Nn and εn as

I

 ~N1(x)
~N2(x)
~N3(x)

 I−1 =

− ~N1(−x)
~N2(−x)

− ~N3(−x)

 (5.7)

and

I

ε1(x)
ε2(x)
ε3(x)

 I−1 =

 ε1(−x)
−ε2(−x)
ε3(−x)

 . (5.8)

Equations (5.7) and (5.8) indicate that the I symmetry

forbids both ~N2 · ~Nn and ε2εn for n = 1 and 3.
Therefore, we conclude that the U(1) spin symmetry,

the translation symmetry, and the I inversion symmetry
simultaneously protect the ingappability and the topo-
logical nontriviality of the gapless SPT phase of the ATS
XXZ model (2.1). The former two symmetries protect
the ingappability and the last one protects both the ef-
fective decoupling and the topological nontriviality. The
symmetry protection clearly distinguishes the present
gapless SPT state from an independent pair of a gapless
TLL and a gapped SPT state.

VI. SUMMARY AND DISCUSSIONS

In this work, we introduced the ATS XXZ model and
showed that this model exhibits the gapless SPT state.
From our DMRG calculations of the entanglement en-
tropy, we found that the ground state is the critical TLL
with the central charge c = 1. We also calculated the
entanglement spectrum with the finite-size DMRG and
iDMRG methods. We confirmed the evenfold degeneracy
of the entanglement spectrum.

We also analyzed the ATS XXZ model with the quan-
tum field theory. The geometrically frustrated inter-
chain interaction effectively decouples the second leg

from the first and third legs. Nevertheless, the second
leg mediates the ferromagnetic interaction between the
first and third legs. At low energies, the effectively de-
coupled second leg behaves as the TLL, whereas the spin
ladder formed by the first and third chains behaves as the
spin-1 Haldane state. As a whole, the ATS XXZ model
forms the gapless SPT phase. This gapless SPT phase is
protected by the U(1) spin-rotation, translation, and the
I inversion symmetry.

In this work, we considered the parameter region with
small J×/J in order to compare the numerical result with
the effective field theory. We have numerically checked
that our gapless SPT phase is stable to changes of J×/J
and ∆ to a certain extent. Showing a detailed J× − ∆
phase diagram is beyond the scope of this paper and left
for a future study54. It will be interesting to investigate
the ATS XXZ model in a wide parameter region, in par-
ticular, with large J×/J . When J = 0, the ATS XXZ
model is reduced to an experimentally feasible model, a
spin-1/2 diamond chain55,56. Since the diamond chain
does not show the gapless SPT phase, we expect that
there will be a phase transition from the gapless SPT
phase as we increase J×/J .

The ATS XXZ model is simple but turns out to be
highly nontrivial. It hosts the gapless SPT phase where
the ground state is approximately a product state of the
critical TLL and the spin-1 Haldane state, in which the
effective decoupling is constrained by the inversion sym-
metry. At the same time, the simple structure of the ATS
XXZ model helped us to foster a better understanding
of the symmetry protection of the gapless SPT phase.
We believe that the ATS XXZ model plays a fundamen-
tal role in future studies on the classification of gapless
phases.

It is noteworthy briefly mentioning the feasibility of
the ATS model. Natural minerals Cu3(OH)4MO4 (M=
S, Mo) are known as spin-1/2 triple-chain magnets com-
posed of three spin-1/2 chains with zigzag interchain in-
teractions just like our ATS model23–29. However, unfor-
tunately, these compounds consist of complex exchange
interactions that break the one-site translation symme-
try. Still, we hope that our study will stimulate further
experimental studies about such triple-chain systems.
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Appendix A: String order

In this section, we briefly discuss a string order of the
ATS model. Let us define the string order between i-
th and j-th column of the ATS model with length L as
follows:

Ostring(i, j;L)

= −

〈
ψL

∣∣∣∣∣T zi exp

[
iπ

j−1∑
k=i+1

T zk

]
T zj

∣∣∣∣∣ψL
〉
, (A1)

We have introduced T zi = Szi,1 + Szi,3, since the ground
state contains the ferromagnetic ladder of the first and
third legs as discussed in Sec. IV. The accurate defi-
nition of string order (in infinite length) is Ostring =
lim|i−j|→∞ limL→∞Ostring(i, j;L). However, instead of
calculating the infinite-size string order, we calculated
Ostring(L/4, 3L/4;L) with the finite-size DMRG method
and investigate its size dependence. The numerical re-
sults are shown in Fig. 11. The effective ferromag-
netic interchain interaction between the first and third
chains is expected to be small. The string order
Ostring(L/4, 3L/4;L) will also become small. We numer-
ically confirmed that the string order takes a finite value
in the finite-size system. In contrast, the string order for
J = 0 is completely zero irrespective of the system size.
For J = 1, J× = 0.5, and ∆ = 0.8, the string order is
decreasing as the system size increases. Unfortunately,
extrapolation to L→∞ is difficult and we cannot draw
a definite conclusion for the string order parameter in the
thermodynamic limit. On the other hand, our character-
ization of the topological state in the main text is based
on the entanglement spectrum, which turned out to be
more robust to the finite-size effects than the string order
parameter.

Appendix B: Perturbative analyses of interchain
interactions

This section supplements the perturbative expression
(4.12) of the interchain interaction. Our arguments are
similar to those in Refs.50,51,57. The present effective field
theory stands on three copies of the level-1 SU(2) Wess-
Zumino-Witten (WZW) theories weakly coupled to each
other. Using the operator product expansion of the level-
1 SU(2) WZW theory, we derive an effective Euclidean
action of the low-energy effective field theory.

1. Operator product expansions

Let us introduce the operator product expansion of
~JR,n, ~JL,n, ~Nn, and their derivatives. Since the operator

FIG. 11. L dependence of string order Ostring(L/4, 3L/4;L).
When J = 1.0, ∆ = 0.8, and J× = 0.5, the small string order
emerges (blue circles). For J = 0.0, the string order becomes
completely zero (green circles).

product expansion works for operators that share the leg
index n, we omit the index n in this subsection for sim-

plicity. We can represent ~JR, ~JL, ~N , and ε in terms of
free chiral Dirac fermions ψR,s and ψL,s with spin s =↑, ↓:

~JR =: ψ†R,s
~σs,s′

2
ψR,s′ :, (B1)

~JL =: ψ†L,s
~σs,s′

2
ψL,s′ :, (B2)

~N =: ψ†R,s
~σs,s′

2
ψL,s′ : + : ψ†L,s

~σs,s′

2
ψR,s′ :, (B3)

ε =
i

2
(: ψ†R,sψL,s : − : ψ†L,sψR,s :), (B4)

where ~σ = (σx σy σz)> is the set of the Pauli matrices and
: · : denotes the normal ordering. These chiral fermions
satisfy the following correlation functions at zero temper-
ature,

〈T ψR,s(x, τ)ψ†R,s′(0, 0)〉 =
δs,s′

2π[vτ − ix+ a0σ(τ)]
, (B5)

〈T ψL,s(x, τ)ψ†L,s′(0, 0)〉 =
δs,s′

2π[vτ + ix+ a0σ(τ)]
, (B6)

where τ is the imaginary time, T denotes the imaginary-
time ordering and σ(τ) denotes the sign of τ ,

σ(τ) =

 1 (τ > 0)
0 (τ = 0)
−1 (τ < 0)

. (B7)

Here, we explicitly introduced the lattice spacing a0 that
was set as unity in the main text.

It is convenient to introduce two complex coordinates,
zL = vτ + ix and zR = vτ − ix that denote the space-
(imaginary)time position of the right-moving and left-

moving particles. Note that ~JR(zR) and ~JL(zL) are
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independent of the coordinate that corresponds to the

opposite chirality. Nonchiral operators ~N(zR, zL) and
ε(zR, zL) depend on both coordinates. Hereafter, we omit
the normal and imaginary-time orderings following the

convention.

The Wick’s theorem leads to the following operator
product expansions57–59.

JaR(zR)JbR(0) =
δab

8π2[zR + a0σ(τ)]2
+

iεabc

2π[zR + a0σ(τ)]
JcR(0), (B8)

JaL(zL)JbL(0) =
δab

8π2[zL + a0σ(τ)]2
+

iεabc

2π[zL + a0σ(τ)]
JcL(0), (B9)

JaR(zR)N b(0, 0) =
1

4π[zR + a0σ(τ)]

(
iεabcN c(0, 0)− iδabε(0, 0)

)
, (B10)

JaL(zR)N b(0, 0) =
1

4π[zL + a0σ(τ)]

(
iεabcN c(0, 0) + iδabε(0, 0)

)
, (B11)

JaR(zR)∂xN
b(0, 0) =

1

4π[zR + a0σ(τ)]2

(
εabcN c(0, 0)− δabε(0, 0)

)
+ · · · , (B12)

JaL(zL)∂xN
b(0, 0) =

1

4π[zL + a0σ(τ)]2

(
−εabcN c(0, 0)− δabε(0, 0)

)
+ · · · , (B13)

Na(zR, zL)N b(0, 0) =
√

[zR + a0σ(τ)][zL + a0σ(τ)]

[
δab

4π2[zR + a0σ(τ)][zL + a0σ(τ)]

+ iεabc
(

JcR(0)

2π[zL + a0σ(τ)]
+

JcL(0)

2π[zR + a0σ(τ)]

)
+ · · ·

]
, (B14)

Na(zR, zL)∂xN
b(0, 0) =

√
[zR + a0σ(τ)][zL + a0σ(τ)]

[
−iδab

8π2[zR + a0σ(τ)]2[zL + a0σ(τ)]

+
iδab

8π2[zR + a0σ(τ)][zL + a0σ(τ)]2
+ iεabc

(
iJcR(0)

4π[zL + a0σ(τ)]2
+

−iJcL(0)

4π[zR + a0σ(τ)]2

)
+ iεabc

iJcR(0)− iJcL(0)

4π[zR + a0σ(τ)][zL + a0σ(τ)]
+ · · ·

]
, (B15)

[∂xN
a(zR, zL)][∂xN

b(0, 0)] =
√

[zR + a0σ(τ)][zL + a0σ(τ)]

[
3δab

16π2[zR + a0σ(τ)]3[zL + a0σ(τ)]

+
−δab

8π2[zR + a0σ(τ)]2[zL + a0σ(τ)]2
+

3δab

16π2[zR + a0σ(τ)][zL + a0σ(τ)]3

+ iεabc
(

3JcR(0)

8π[zL + a0σ(τ)]3
+

3JcL(0)

8π[zR + a0σ(τ)]3

)
+ iεabc

(
JcR(0)− JcL(0)

8π[zR + a0σ(τ)][zL + a0σ(τ)]2
+

−JcR(0) + JcL(0)

[zR + a0σ(τ)]2[zL + a0σ(τ)]

)
+ · · ·

]
,

(B16)

where δab is the Kronecker’s delta, εabc is the completely
antisymmetric tensor with εxyz = 1, and the terms de-
noted by · · · are omitted above because they are irrele-
vant in the RG sense. We emphasize two points about
these operator product expansions. First, the operator
product expansions hold when |zR| � 1 and |zL| � 1.
Second, the right hand sides contain much more relevant
operators than the left hand sides [e.g., Eqs. (B10) and
(B12)].

2. Effective Euclidean action

Let S be the Euclidean action of the low-energy effec-
tive field theory. We can represent S as an imaginary-
time integral of the following Hamiltonian.

S = S0 + S×, (B17)

S0 =

∫ ∞
−∞

dτ H0(τ), (B18)
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S× =

∫ ∞
−∞

dτ Vnaive(τ). (B19)

The naive expression (4.11) is correct here because we

obtain it by replacing the spin operator with ~Jn and ~N
[Eq. (4.4)]. The full partition function Z and the unper-
turbed one Z0 are symbolically represented in terms of
path integrals as,

Z =

∫ 3∏
n=1

D ~JnD ~Nn exp(−S), (B20)

Z0 =

∫ 3∏
n=1

D ~JnD ~Nn exp(−S0). (B21)

We perform the perturbation expansion,

exp(−S×) = 1− S× +
1

2
S2
× + · · · , (B22)

up to the second order of Vnaive. The second-order term
S2
× =

∫∞
−∞ dτ ′

∫∞
−∞ dτVnaive(τ)Vnaive(τ ′) contain many

nonlocal interactions such as [ ~J2(x, τ)· ~J1(x, τ)][ ~J2(x′, τ ′)·
~J3(x′, τ ′)]. We already saw that RG relevant interactions
emerge when the operator product expansion works,
namely for x ≈ x′ and τ ≈ τ ′. Following Ref.51, we
keep the relevant interaction with x = x′ and τ ≈ τ ′

in Vnaive(τ)Vnaive(τ ′). The operator product expansions
given above lead to

[ ~J2(x, τ) · ~J1(x, τ)][ ~J2(x, τ ′) · ~J3(x, τ ′)]

=
1

4π2[v(τ − τ ′) + a0σ(τ − τ ′)]2
~J1(x, τ ′) · ~J3(x, τ ′) + · · · ,

(B23)

[∂x ~N2(x, τ) · ~N1(x, τ)][∂x ~N2(x, τ) · ~N3(x, τ ′)]

=
1

4π2|v(τ − τ ′) + a0σ(τ − τ ′)|3
~N1(x, τ ′) · ~N3(x, τ ′)

+ · · · . (B24)

S2
× generates interactions between the first and third legs

through operator product expansions. We thus obtain

1

2
S2
× ≈

∫ ∞
−∞

dτ

∫
dx

[
γ2
J

4π2va0

~J1 · ~J3 +
γ2

tw

8π2va2
0

~N1 · ~N3

]
.

(B25)

These interactions turns into the effective ferromagnetic
interaction between the first and third legs because we
may approximate exp(−S×) as

exp(−S×) ≈ 1− S× +
1

2
(S×)2

≈ 1− S ′×
≈ exp(−S ′×), (B26)

where S ′× is given by

S ′× ≈
∫
dτ Vnaive(τ)

−
∫
dτdx

[
γ2
J

4π2v
~J1 · ~J3 +

γ2
tw

8π2v
~N1 · ~N3

]
. (B27)

Note that we obtained qualitatively the same result as
Ref.50 (see Eq. (5) therein). However, we comment that
the coupling constant γ2

tw/8π
2v ∼ J2

×/J is the second-
order of J2

× while it is fourth in Ref.50.
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