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In this study, we explore the geometric construction of the Klein bottle and the real projective
plane (RP2) within the framework of tensor networks, focusing on the implementation of cross-
cap and rainbow boundaries. Previous investigations have applied boundary matrix product state
(MPS) techniques to study these boundaries. We introduce a novel approach that incorporates such
boundaries into the tensor renormalization group (TRG) methodology, facilitated by an efficient
representation of a spatial reflection operator. This advancement enables us to compute the cross-
cap and rainbow free energy terms and the one-point function on RP2 with enhanced efficiency and
for larger system sizes. Additionally, our method is capable of calculating the partition function
under isotropic conditions of space and imaginary time. The versatility of this approach is further
underscored by its applicability to constructing other (non-)orientable surfaces of higher genus.

I. INTRODUCTION

Classifying the phases of matter represents a funda-
mental challenge and goal within the field of physics.
This classification enables the tailored design of models to
exhibit desired phenomena, navigating the intricate land-
scape of physical properties. However, the complexity in-
herent in realistic models presents significant challenges.
To address these, the concept of universality in critical
phenomena occurring at the phase boundaries becomes
instrumental. Universal quantities, such as critical expo-
nents, offer insights into the mechanisms underpinning
phase transitions. These insights are invaluable, as the
fundamental processes of phase transitions are often not
apparent through the microscopic details of the systems
involved.

The utility of universality is underscored in the
study of critical phenomena within both one-dimensional
quantum systems and two-dimensional classical sys-
tems, where conformal field theory (CFT) serves to
describe these universal properties. Recent advance-
ments have further highlighted the importance of CFT-
derived universal quantities in analyzing edge states
within (2+1)-dimensional symmetry-protected topolog-
ical (SPT) phases, making the acquisition of CFT data
crucial for understanding the underlying mechanisms of
phase transitions [1–3].

An intriguing development in this context is that uni-
versal quantities can be discerned through the partition
function on non-orientable surfaces. This approach indi-
cates that a spatial reflection introduces a universal term
to the partition function. In particular, the ratio of the
partition function on the Klein bottle to that on the torus
is given by a universal ratio [4, 5]:

ZK(β2 , 2L)

ZT (β, L)
≃ g, (1)

when the system length is significantly larger than its
inverse temperature L ≫ β. Here, g is a universal con-
stant unique to its universality class. More precisely, g
is
∑

a
da

D for diagonal CFTs, with da being the quantum

dimension of the primary field a, and D representing the
total quantum dimension. As g takes a unique value de-
pending on the criticality, it can be used as a tool to de-
tect phase transitions (g = 1 for trivially gapped phases).
This theory has been corroborated through numerical
studies, including Monte-Carlo and tensor-network simu-
lations employing boundary matrix product state (MPS)
techniques [6–13].
This concept was further expanded to include the non-

orientable surface RP2, leading to the discovery of an-
other universal ratio [10, 14]:

ZRP2

(β2 , 2L)

ZT (β, L)
∼ βc/4, (2)

where c denotes the central charge, a critical universal pa-
rameter within CFT. The identification of these universal
ratios is pivotal for elucidating the universal critical and
topological characteristics of systems. Yet, direct simula-
tion of geometrically twisted boundaries, crucial for the
realization of both the Klein bottle and RP2, presents
considerable challenges. As a workaround, previous ef-
forts have resorted to approximations, such as comput-
ing crosscap and rainbow-cap states via boundary ma-
trix product state (MPS) techniques, applicable predom-
inantly in the anisotropic limit where L ≫ β. Given
the foundational role of RP2 in constructing generalized
non-orientable surfaces, its accurate realization across a
broader range of cases remains a critical objective.
Addressing this gap, we introduce tensor-network

strategies for simulating the Klein bottle and RP2 config-
urations directly. By integrating the higher-order tensor
renormalization group (HOTRG) [15] with spatial reflec-

tions, we enable the computation of ZK and ZRP2

for
extensive system sizes, thereby facilitating a deeper un-
derstanding of universal critical and topological features.
In addition to this, we demonstrate that HOTRG can

be utilized to extract another piece of universal data. The
partition function of CFT on a torus is determined by its
operator content and operator product expansion (OPE)
coefficients, Cijk. Prior research has illustrated the ef-
fectiveness of both tensor renormalization group (TRG)



2

and tensor network renormalization (TNR) methods in
efficiently retrieving these CFT data [16–27]. For non-
orientable surfaces, however, a different type of universal
data is required—the one-point function of the primary
operators [4]:

⟨ϕk⟩RP2 =
Γk

(1 + zz̄)2h
, (3)

with RP2 conceptualized as the complex plane z, under
the involution I(z) = −1

z̄ and h being a conformal weight.

This conceptualization stems from viewing RP2 as a pro-
jective space in which antipodal points on a Riemann
sphere of radius 1

2 are identified. Our findings indicate
that the parameter Γk, pivotal for understanding the be-
havior of physical quantities on non-orientable Riemann
surfaces, can be directly calculated using both TRG and
TNR approaches.

This paper is organized as follows: Initially, we pro-
vide an overview of tensor network methodologies and
the concept of CFT on the Klein bottle and RP2 in Sec-
tion II. Subsequently, The numerical outcomes derived
from our algorithm are showcased in Section III. Finally,
we explore the potential implications and applicability of
our findings in Section IV.

Our numerical calculations were performed using
ITensors [28]. Sample Codes to reproduce the fig-
ures in Section III can be found at the follow-
ing repository: https://github.com/elle-et-noire/
HOTRG-nonorientablesurface

II. METHOD

In this study, we focus on statistical models defined on
a square lattice with nearest neighbor interactions. Al-
though our demonstrations primarily utilize the HOTRG
framework, the methodologies we introduce are versatile
enough to be applied across a range of TRG and TNR
algorithms.

A. Review on HOTRG

In statistical mechanics, the probability of a specific
configuration is captured by its Boltzmann weight. The
aggregate of these weights across all possible configura-
tions yields the partition function, a cornerstone for cal-
culating various physical properties. Within the frame-
work of tensor network representations, this comprehen-
sive summation process is facilitated by tensor contrac-
tions. Contracting tensors effectively sums over the in-
dices being contracted, which correspond to the degrees
of freedom in the system, such as a spin in lattice models.

Let T (0) = T be an initial tensor of HOTRG which
represents the local Boltzmann weights of the partition
function. The torus partition function is obtained by

contracting all the tensors in the system with bonds con-
necting the nearest neighboring sites:

Z =
∑

{xi,x′
i,yi,y′

i}

∏
Txix′

iyiy′
i

with periodic boundary condition.
At the n-th step of coarse graining, first we contract the

previously obtained tensor T (n−1) in vertical direction:

M
(n)
x1x2x′

1x
′
2yy

′ =
∑
i

T
(n−1)
x1x′

1yi
T

(n−1)
x2x′

2iy
′ . (4)

Then we obtain the isometry by singular value decompo-
sition (SVD):∑

xx′yy′

M
(n)
x1x2xx′yy′M

(n)
x′
1x

′
2xx

′yy′ ≈
∑
ii′

U
(n)
ix1x2

Λ
(n)
ii′ U

(n)
i′x′

1x
′
2

where i, i′ is truncated up to χ dimension. Contracting
the isometry U (n), we get vertically renomalized tensor:

W
(n)
xx′yy′ =

∑
x1x′

1y1y′
1

U (n)
xx1x2

M
(n)
x1x2x′

1x
′
2yy

′U
(n)
x′x′

1x
′
2
.

Then, we repeat the same procedure in horizontal di-
rection:

T
(n)
xx′yy′ =

∑
iy1y′

1y2y′
2

V (n)
yy1y2

W
(n)
xiy1y′

1
W

(n)
ix′y2y′

2
V

(n)
y′y′

1y
′
2

with an appropriate isometry V (n) obtained by SVD.
Thus, the height and width of the system renormalized
into T (n) is equal.

B. Renormalization of a spatial reflection operator

Consider a system characterized by a width L along the
x-direction and a height β along the y-direction, adhering
to the thermodynamic limit L ≫ β ≫ 1. To compute the
partition functions for the Klein bottle and RP2 within
a tensor network framework, we employ the cut-and-sew
method as described in Refs. [4, 10]. We briefly review
these concepts for clarity.

The partition function on the Klein bottle is periodic
in the spatial direction and undergoes a geometric twist
in the β-direction, as depicted in Fig. 1(a). To evaluate
this quantity, we bisect the partition function medially,
then overlay the right half atop the left, subsequent to a
spatial inversion. This process is visualized in the right
panel of Fig. 1(a). The resultant partition function has a
width of L/2 and a height of 2β. Notably, the β-direction
retains its periodicity, whereas the boundaries at x =
0 and L/2 are no longer periodic. Instead, they adopt
crosscap boundary conditions, as illustrated in (c).
A similar “cut and sew” process applied to RP2 results

in the imposition of rainbow and crosscap boundaries at
x = 0 and L/2, respectively, as depicted in (b). The rain-
bow boundary is further illustrated in (d). Notably, the

https://github.com/elle-et-noire/HOTRG-nonorientablesurface
https://github.com/elle-et-noire/HOTRG-nonorientablesurface
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FIG. 1. Illustrations of the partition functions on (a) the
Klein bottle and (b) RP2. These partition functions can be cut
in the middle as shown in the blue arrows(left panel), and then
sewn again after flipping the latter half in x-direction. The
resulting boundaries are crosscap states for the Klein bottle
and rainbow and crosscap states for RP2. The schematic
picture of the crosscap and rainbow boundaries are shown in
(c) and (d), respectively. (e) In the limit L ≫ β ≫ 1, the

bulk part of the partition function ZRP2

(β, L) is dominated
by the leading eigenvector |i0⟩ of the transfer matrix on a
cylinder. The boundary contributions are then represented
as the overlaps with |i0⟩ as denoted as ⟨R|i0⟩ and ⟨i0|C⟩.

β-direction maintains periodicity in RP2 as well. This
periodicity is instrumental in facilitating the computa-
tion of partition functions on both the Klein bottle and
RP2.

Let Mβ be a transfer matrix in x-direction, which has
height β. In the limit L ≫ β ≫ 1, the partition func-
tion Z(β, L) = ⟨BL|ML

β |BR⟩ is approximated using the
largest eigenvector and its eigenvalue, respectively de-
noted as |i0⟩β and λ0(β):

Z(β, L)
L≫β
≈ ⟨BL|i0⟩β [λ0(β)]

L
β ⟨i0|BR⟩ .

In the case of the torus, the Klein bottle and RP2, the
corresponding partition functions are given as

ZT (β, L) ≈ [λ0(β)]
L, (5)

ZK(β, L) ≈ ⟨C|i0⟩2β [λ0(2β)]
L/2

2β⟨i0|C⟩ , (6)

ZRP2

(β, L) ≈ ⟨R|i0⟩2β [λ0(2β)]
L/2

2β⟨i0|C⟩ , (7)

where |C⟩ (|R⟩) represents a crosscap (rainbow) state.
Equation (7) is pictorially shown in Fig. 1 (e).

Given (5-7), ZK and ZRP2

contain extra terms arising
from the boundaries compared to ZT as follows:

ln
ZK(β2 , 2L)

ZT (β, L)
= 2 ln |⟨C|i0⟩|,

ln
ZRP2

(β2 , 2L)

ZT (β, L)
= ln |⟨C|i0⟩|+ ln |⟨R|i0⟩β |

This boundary free energy FC := ln |⟨C|i0⟩| and FR :=
ln |⟨R|i0⟩β | is respectively referred to as crosscap and

≈ ≈

FIG. 2. Tensor network representations of a crosscap bound-
ary condition. The six triangles are the left-hand side isome-
tries to renormalize the bulk tensor T (0) into T (2), with four
smaller ones being U (1) and two larger ones U (2). The ar-
rows indicate the order of two indices before amalgamation
and truncation, which correspond to the order of x1 and x2

in U
(n)
xx1x2 .

rainbow free energy. In CFT, FC and FR are expressed
with universal terms as [6, 10]

FC =
1

2
ln g, (8)

FR =
c

4
lnβ + b, (9)

where c and b are the central charge and non-universal
constant. Thus, computing the crosscap and rainbow free
energy allows us to directly read out the universal data.
To compute FC or FR via tensor network techniques,

consider the scenario at the n-th step of HOTRG, specif-
ically when β = 2n. Here, the matrix Mβ is essentially

derived from T (n) by contracting its indices along the
y-direction. The leading eigenvector of Mβ , denoted as
|i0⟩β , is required to possess two tensor indices to facili-

tate contraction with the states |C⟩ or |R⟩, each of which
also manifests in a dual-index tensor format as elucidated
subsequently. This necessitates the vertical duplication
of T (n−1), leading to the formulation:

(Mβ)(x1x2)(x′
1x

′
2)

=
∑
y

M
(n)
x1x2x′

1x
′
2yy

,

where (Mβ)(x1x2)(x′
1x

′
2)

represents the transfer matrix
along the x-direction. In this context, (x1x2) and (x′

1x
′
2)

serve as the composite matrix indices, with the notation
(ab) signifying the amalgamation of indices a and b.

Let L
(n)
x1x2 be the leading eigenvector of Mβ :∑
x1x2

L(n)
x1x2

(Mβ)(x1x2)(x′
1x

′
2)

= λ0(β)L
(n)
x′
1x

′
2
.

Then we can assume L
(n)
x1x2 as a tensor representation of

|i0⟩β with two indices.

1. Crosscap free energy term

To construct a crosscap within the coarse-grained ten-
sor framework, we proceed by contracting the indices x1
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O ≈ OO ≈

FIG. 3. Tensor network representations of a rainbow bound-
ary condition. With the spatial reflection operator O(n) in
between the isometries, the lower half of the indices are in
the reverse order.

≈ ≈

FIG. 4. Alternative way to construct a rainbow boundary
condition in tensor network. Instead of contracting a renor-
malized spatial reflection operator, we just reflect the ver-
tically copied bulk tensor T (n) in vertical direction, which
means that the included isometries are also reflected.

and x2 of L
(n)
x1x2 , as illustrated in Fig. 2. This operation

effectively encapsulates the crosscap structure at the n-th

level of coarse-graining. The crosscap free energy, F
(n)
C ,

can subsequently be computed as follows:

F
(n)
C = ln

(∑
x

L(n)
xx

)
. (10)

This equation provides a direct method for evaluating
the free energy associated with the crosscap configura-
tion, leveraging the simplicity of tensor contractions to
elucidate the energetic contributions of topologically non-
trivial structures within the tensor network formalism.

2. Rainbow free energy term

In order to construct a rainbow state, we renormalize
a spatial reflection operator which inverts the direction
of a edge of the bulk tensor T (n).
Let the initial spatial reflection operator be an unit

matrix:

O
(0)
ab = δab.

At the n-th step, we renormalize the spatial reflection

operator reusing the isometry used to renormalize T (n):

O
(n)
ab =

∑
ii′jj′

U
(n)
aij O

(n−1)
ii′ O

(n−1)
jj′ U

(n)
bj′i′ .

This can be graphically represented as below:

O

O

O

.

Using the spatial reflection operator and the leading

eigenvector L
(n)
x1x2 , we can construct a rainbow bound-

ary in coarse grained tensor and obtain the n-th rainbow

term, F
(n)
R , as follows [29]:

F
(n)
R = ln

(∑
x1x2

L(n)
x1x2

O(n−1)
x1x2

)
. (11)

This process is depicted in Fig. 3.
An alternative approach to constructing a rainbow

state involves inverting the direction of the copied ten-
sor at the vertical contraction step in (4), which effec-
tively reflects the lower half of the left vertical boundary
without necessitating the renormalization of the spatial
reflection operator. This is expressed as:

M̃
(n)
x1x2x′

1x
′
2yy

′ =
∑
i

T
(n−1)
x1x′

1yi
T

(n−1)
x2x′

2y
′i. (12)

Following this adjustment, the subsequent HOTRG steps

proceed by treating M̃ (n) as if it wereM (n). This method
provides a straightforward mechanism for embodying the
geometric nuances of a rainbow state within the tensor
network formalism, leveraging the inherent symmetries
and structural modifications to simulate complex bound-
ary conditions effectively.
In this construction, we get rainbow boundary state by

just contracting the indices of the largest eigenvector as
shown in Fig. 4:

F̃
(n)
R = ln

(∑
x

L̃(n)
xx

)
, (13)

where L̃(n) is the largest eigenvector obtained from diag-

onalizing M̃ (n) in (12) [30].

III. RESULTS

We implemented the crosscap and rainbow boundary
conditions on both the Ising and three-state Potts model
to calculate the free energy terms FC and FR. As shown
in Fig. 5 and Fig. 6, both terms obtained from ten-
sor network calculations fit well with (1) or (2), up to
β ∼ 128 and β ∼ 32 for the Ising model and three-state
Potts model, respectively. The rainbow free energy term
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4 16 64

0.25

0.50

0.75

1.00

β

F
R

Ising (c = 0.5)
Potts (c = 0.8)

Fitting Formula:
FR = c

4
ln β + b

FIG. 5. Rainbow free energy term FR of the Ising and three-
state Potts model with χ = 45.

4 16 64
0.20

0.25

0.30

0.35

0.40

0.45

β

F
C

1
2
ln gIsing =

1
2
ln(1 + 1/

√
2)

1
2
ln gPotts =

1
2
ln
√

3 + 6/
√
5

FIG. 6. Crosscap free energy term FC of the Ising and three-
state Potts model with χ = 45.

is also calculated by (13), with resulting F̃R in perfect
agreement with FR, the value obtained by using spatial
reflection operator. The deviation from the theoretical
value for the three-state Potts model is attributed to a
finite-bond dimension effect. Notably, an enhancement
in accuracy was achieved by increasing the bond dimen-
sion χ (Not shown here). These findings underscore the
effectiveness and precision of our proposed methodolo-
gies.

Finally, we proceed to calculate another set of CFT

4 16 64

0.0

0.5

1.0

1.5

2.0

β

Γ
2 k

Γ2
I = 1 + 1/

√
2

Γ2
σ = 0

Γ2
ϵ = 1− 1/

√
2

FIG. 7. Γk computed from the Ising model with χ = 45.

data, specifically Γk, as outlined in Eq. (3). This equa-
tion can also be interpreted as the overlap ⟨ϕk|C⟩, which
allows us to compute Γk by evaluating the overlap be-
tween the normalized primary state |ϕk⟩ and the cross-
cap state |C⟩. Recalling that the transfer matrix on a

cylinder is given by e−2π(L0+L̄0), where L0 and L̄0 repre-
sent the holomorphic and anti-holomorphic components
of the dilatation operators, respectively, its eigenvectors
correspond to the primary operators and their descen-
dants. Importantly, the leading eigenvector |i0⟩ in the
previous sections is associated with the identity operator
I. Consequently, we derive the following relation:

Γ2
I = |⟨0|C⟩|2,
= g.

To compute Γk for a generic k, we utilize the method-
ology outlined in Sec.II B 1 and apply it to additional
eigenvectors. Specifically, each eigenvector of the trans-
fer matrix, constructed following the procedure described
in Sec.II B 1, possesses two indices. The overlap with
the crosscap state is determined by contracting these in-
dices similar to (10). To illustrate this process, we ap-
ply our method to the Ising model. Within this con-
text, the second leading and third leading eigenvectors
correspond to the magnetic operator σ and the energy
operator ϵ, respectively, in the Ising CFT. The numer-
ical results are summarized in Fig. 7. Γk of the Ising

model has analytical solutions: Γ2
I = 2+

√
2

2 , Γ2
σ = 0, and

Γ2
ϵ = 2−

√
2

2 . Our numerical results are highly consistent
with the theoretical values, denoted with dotted lines.
Similarly, computing the same quantities on other lattice
models enables direct access to the universal information
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about non-orientable manifolds Γk, which highlights the
the power of our scheme.

IV. CONCLUSION AND DISCUSSION

In our work, we introduced an novel method for cal-
culating the partition functions on non-orientable sur-
faces, fundamentally advancing tensor network simula-
tions. The core of our approach hinges on maintain-
ing data on boundary configurations during the coarse-
graining steps by tracking a spatial reflection operator,
denoted as O . While a standard leg contraction reflects
periodic boundary conditions, additionally incorporat-
ing O enables the theoretical construction of partition
functions across diverse manifolds. For instance, the ori-
entable genus-n surface can be realized by contracting
(sewing) 2n renormalized tensors, and we can extend this
idea to non-orientable ones by inserting O when sewing
the tensors [31]. This development not only broadens
the applicability of tensor network simulations but also
opens new avenues for exploring the physics of complex
geometries and topologies. As a practical application,

we showcase the calculation of the one-point function on
the non-orientable surface RP2, addressing a previously
unexplored aspect of universal information within tensor
network research. By synthesizing our method with in-
sights from prior studies, we establish a comprehensive
framework capable of deriving all critical data pertinent
to CFT from tensor network analyses. This achievement
underscores the potential of our approach to contribute
significantly to the understanding of CFT data and its
implications for phase transitions and critical phenom-
ena in statistical physics and condensed matter theory.
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